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Foreword by Professor
Joachim Hornegger

Computed tomography is no longer limited to diagnostic imaging procedures but is
nowadays routinely used in interventional radiology. The key requirement of inter-
ventional radiologists is a reconstruction time of less than 30 seconds. The usage of
hardware accelerators and the development of highly optimized reconstruction algo-
rithms is therefore not an option but mandatory from a practitioner’s point of view.
Especially the extension of C-arm devices with 3-D imaging capabilities has increased
the demands on fast and efficient 3-D reconstruction machines. The assessment of the
wide range of modern hardware accelerators for computed tomography is an emerging
field. Many research teams work world wide on this problem. The large number of
scientific publications on hardware accelerated 3-D reconstruction demonstrates the
strong activities in this field. Most of the research is accompanied by industry that
has an enormous pressure to get access to low-cost and high performance solutions.

In this book Dr. Holger Scherl considers the field of computed tomography includ-
ing a review of state-of-the-art reconstruction algorithms and a concise assessment
of the most recent hardware architectures. The text introduces the reader to the
reconstruction problem in computed tomography and its major scientific challenges
that range from computational efficiency to the fulfillment of Tuy’s sufficiency con-
dition. The assessed hardware architectures include multi- and many core systems,
cell broad-band engine architecture, graphics processing units (GPUs), and field pro-
grammable gate arrays. The focus of this book is on the interplay of these recent
hardware platforms and modern computed tomography reconstruction algorithms.

Dr. Scherl developed and evaluated a hard- and software framework that is unique
and serves as a base for several research projects that deal with hardware accelerated
reconstruction. Today the developed system is also used within product implementa-
tions in industry, and this particular transfer of the software platform from research
to industry is exceptional. The pioneering work is not only appreciated by industry
but also by the research community. Holger Scherl’s initial publication on the GPU
implementation of the reconstruction pipeline using CUDA is referenced more than
50 times.

I consider this book to be unique both in the degree of detail in the experimental
evaluation and in the algorithms used for assessment. To my knowledge Holger Scherl
is the first researcher considering both modern hardware architectures and most recent
computed tomography algorithms.
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viii Foreword by Professor Joachim Hornegger

I am pretty much convinced that the reader of this book will experience many
novel aspects of computed tomography algorithms and their implementation on dif-
ferent hardware architectures.

Erlangen, 2011-04-04 Prof. Dr.-Ing. Joachim Hornegger
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Abstract

We present an evaluation of state-of-the-art computer hardware architectures for im-
plementing the FDK method, which solves the three-dimensional image reconstruc-
tion task in cone-beam computed tomography (CT). The computational complexity
of the FDK method prohibits its use for many clinical applications unless appropriate
hardware acceleration is employed. Today’s most powerful hardware architectures for
high-performance computing applications are based on standard multi-core proces-
sors, off-the-shelf graphics boards, the Cell Broadband Engine Architecture (CBEA),
or customized accelerator platforms (e.g., FPGA-based computer components).

For each hardware platform under consideration, we describe a thoroughly opti-
mized implementation of the most time-consuming parts of the FDK method; the
filtering step as well as the subsequent back-projection step. We further explain the
required code transformations to parallelize the algorithm for the respective target
architecture. We compare both the implementation complexity and the resulting per-
formance of all architectures under consideration using the same two medical datasets
which have been acquired using a standard C-arm device. Our optimized back-
projection implementations achieve at least a speed-up of 6.5 (CBEA), 22.0 (GPU),
and 35.8 (FPGA) compared to a standard workstation equipped with a quad-core
processor. It is demonstrated that three hardware platforms (namely CBEA, GPUs,
and FPGA-based architectures) enable real-time CT reconstruction and therefore
support highly efficient clinical workflow.

We further describe and evaluate an optimized CBEA-based implementation of
the M-line method, which is a theoretically exact and stable reconstruction algorithm.
The M-line method solves the problem of cone-artifacts, which may cover small ob-
ject details, thus providing excellent image quality. Its implementation, however,
has an increased computational complexity as the M-line method requires additional
computations for the filtering of the projection images, e.g. derivative computation
and filtering along oblique lines in the projections. The execution time of filtering
increases by a factor of 3.5 compared to the FDK method. Nevertheless, we are able
to demonstrate on-the-fly rconstruction capability on a dual Cell Blade.

Finally, we present an efficient implementation of the computationally most de-
manding steps in iterative reconstruction algorithms on off-the-shelf graphics boards.
Because the back-projection step can be implemented similar to the FDK method
we especially consider the forward-projection step. Our implementation is based on
a ray casting algorithm in order to make efficient use of the texture hardware in cur-
rent graphics accelerators. Using a reasonable parameter configuration the forward-
projection step requires roughly twice as much processing time as the back-projection
step.
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Kurzfassung

Wir präsentieren eine Evaluierung verschiedener moderner Computerarchitekturen
zur Implementierung der FDK Methode, die das dreidimensionale Rekonstruktions-
problem in der Computertomographie aus Kegelstrahlprojektionen löst. Die Rechen-
komplexität der FDK Methode verhindert deren Einsatz in vielen klinischen Applika-
tionen, solange keine geeignete Hardwarebeschleunigung eingesetzt wird. Heutzutage
basieren die meisten Hardwarearchitekturen, die für hochperformante Rechenanwen-
dungen geeignet sind, auf gewöhnlichen Mehrkernprozessoren, auf der Cell Broadband
Engine Architektur (CBEA), auf Standardgrafikbeschleunigerkarten oder auf maß-
geschneiderten Beschleunigerarchitekturen wie beispielsweise FPGA-basierten Com-
puterkomponenten. Wir beschreiben für jede betrachtete Hardwarearchitektur eine
sorgfältig optimierte Implementierung der rechenaufwändigsten Schritte der FDKMe-
thode: der Filterschritt sowie auch der darauffolgende Rückprojektionsschritt. Wir
zeigen außerdem notwendige Codetransformationen um den Algorithmus für die ein-
zelnen Zielarchitekturen zu parallelisieren. Wir vergleichen sowohl die Komplexität
der Implementierungen als auch die erzielte Performanz aller betrachteter Architek-
turen anhand zweier medizinischer Datensätze, die mit einem C-Bogengerät aufge-
nommen wurden. Unsere optimierten Rückprojektionsimplementierungen erzielen
im Vergleich zu einer Standard-Workstation mit einem Vierkernprozessor mindestens
eine Beschleunigung um den Faktor 6.5 (CBEA), 22.0 (GPU) und 35.8 (FPGA). Es
konnte gezeigt werden, dass drei Hardwareplattformen (CBEA, GPUs und FPGA-
basierte Architekturen) eine CT-Rekonstruktion in Echtzeit ermöglichen und damit
sehr effizient den klinischen Arbeitsablauf unterstützen.

Weiterhin beschreiben und evaluieren wir eine optimierte CBEA-basierte Imple-
mentierung der M-line Methode, die ein theoeretisch exaktes und stabiles Rekonstruk-
tionsverfahren darstellt. Die M-line Methode liefert eine exzellente Bildqualität, da
sie das Problem der Kegelstrahlartefakte, die kleine Objektdetails verdecken können,
löst. Ihre Implementierung verlangt jedoch eine erhöhte Rechenkomplexität, weil die
M-line Methode zusätzliche Berechnungen für die Filterung von Projektionsbildern
erfordert, wie zum Beispiel die Berechnung von Ableitungen und die Filterung entlang
schräger Linien innerhalb einer Projektion. Im Vergleich zur FDK Methode erhöht
sich die Ausführungszeit der Filterung um den Faktor 3.5. Wir können dennoch auf
einem dualen Cell Blade eine mit der Datenaufnahme schritthaltende Rekonstruktion
erzielen.

Schließlich präsentieren wir eine effiziente Implementierung der rechenintensivsten
Schritte eines iterativen Rekonstruktionsalgorithmus auf Standardgrafikbeschleuni-
gern. Hierbei betrachten wir besonders den Vorwärtsprojektionsschritt. Die Imple-
mentierung des Rückprojektionsschrittes ist nahezu identisch mit deren Implemen-
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tierung im Falle der FDK Methode. Um die Textureinheiten in aktuellen Grafikpro-
zessoren effizient nutzen zu können, basiert unsere Implementierung auf einem soge-
nannten Strahlverfolgungsverfahren (ray casting). Unter Benutzung einer adäquaten
Parameterkonfiguration benötigt der Vorwärtsprojektionsschritt ungefähr doppelt so
viel Verarbeitungszeit wie der Rückprojektionsschritt.
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Chapter 1

Introduction

Computed tomography (CT) is a widely used imaging technique in the field of med-
ical diagnosis and industrial non-destructive testing (NDT) applications. Using a
sufficiently large series of X-ray images taken from different views around the object
or patient a digital computer is used to generate slice images of the inside of the
considered object or patient.

In modern CT devices three-dimensional (3-D) reconstruction techniques are em-
ployed that are able to deal with the cone-beam geometry resulting from X-ray pro-
jections that are measured with a two-dimensional detector array. This imaging
approach enables the fast acquisition of the projection images and at the same time
delivers high image quality. The computational complexity of the applied 3-D recon-
struction methods prohibits their use in many medical applications without hardware
acceleration. The use of hardware acceleration is therefore an important area of re-
search in the field of cone-beam reconstruction. It is very important that advances
in the theory of 3-D reconstruction go hand in hand with the development of suit-
able parallelization techniques that map them efficiently to appropriate hardware
acceleration platforms.

1.1 Reconstruction Algorithms

A computationally efficient way to solve the reconstruction task is a technique which
is called filtered back-projection (FBP). FBP methods achieve the reconstruction of
an object by first filtering the cone-beam projections and then computing the back-
projection of the filtered projections into the 3-D space.

The most successful full 3-D FBP algorithm was developed by Feldkamp, Davis,
and Kress, which is commonly referred to as the FDK method [Feld 84]. The algo-
rithm deals with a circular acquisition trajectory, where the X-ray source and the
detector rotate around the center of the object to be scanned. It is equally possible
to fix the X-ray source and detector while rotating the object, which is often the case
in NDT applications.

The FDK method is used in most of today’s cone-beam CT scanners such as
C-arm devices, radiation therapy devices, dental CT devices, and in a modified way
also in 3-D digital mammography devices and helical CT scanners (see Figure 1.1)
as the standard image reconstruction approach.

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
Cone-Beam CT Reconstruction, DOI 10.1007/978-3-8348-8259-2_1, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011



www.manaraa.com

2 Chapter 1. Introduction

(a) Helical CT scanner. (b) Radiation therapy device.

(c) Robotic C-arm device. (d) Mobile C-arm device.

(e) Ceiling-mounted C-arm device. (f) Digital mammography device (3-D breast
tomosynthesis).

Figure 1.1: Several medical devices using CT imaging. By courtesy of Siemens AG.
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In medical imaging a high image quality is required. Using the state-of-the-
art FDK method, however, the occurring cone artifacts may cover small object de-
tails complicating their distinction. Cone artifacts manifest in the reconstruction
as blurred zones at high density contrasts in the direction of the rotation axis. In
medical datasets high density contrasts are located mainly at the transition between
bone structures and tissue or air. The approximative nature of the Feldkamp algo-
rithm is due to two reasons. First, the circular acquisition does not fulfill the data
completeness condition necessary to compute a 3-D reconstruction using cone-beam
measurements [Tuy 83], and second, the applied theory is a rather straightforward ex-
tension of the 2-D reconstruction theory to the 3-D geometry [Turb 01]. This adaption
is incorrect in a strictly mathematical sense, but it still provides acceptable image
quality in many medical and industrial application areas.

Recently, theoretically exact and stable1 reconstruction algorithms have been de-
veloped providing excellent image quality without any cone artifacts and at the same
time allowing an implementation in the computationally efficient FBP framework.
Nevertheless, these algorithms have an increased computational complexity as they
require additional computations for the filtering of the projection images, e.g. deriva-
tive computation and filtering along oblique lines in the projection. Thus, especially
the filtering of projections incurs much more computations to be performed by the
image reconstruction hardware. In order to apply these methods to cone-beam CT
the data completeness condition must be ensured (see [Scho 01] for an overview of
complete source trajectories). For example, appropriate trajectories are provided
by a helical acquisition [Kats 03] or by extending the circular acquisition with an
additional line [Kats 04] or arc segment [Kats 05].

The reconstruction task can also be solved in an entirely different way using it-
erative reconstruction methods. These methods start from an initial volume to be
reconstructed. Then, a sequence of alternating forward-projections of the current
reconstructed object and a corrective back-projection is performed until the recon-
struction has converged to a solution that fits a certain convergence criterion. While
iterative approaches are conceptually simpler than analytical approaches, they are
computationally much more demanding, which has prohibited their use in most prac-
tical CT reconstruction systems up to now. However, in certain situations improved
image quality can be achieved by using iterative approaches [Muel 98]. This is es-
pecially the case when a sufficiently large number of projections is not feasible or
simply not desired to measure. Iterative approaches further achieve better image
quality when the projections are not uniformly distributed over the scan trajectory.
Statistical iterative reconstruction approaches have been used in molecular imaging
scanners for a few years. In this domain it is possible to significantly improve the im-
age quality for noisy data by incorporating physical effects of the acquisition process
into the reconstruction algorithm.

1 A reconstruction algorithm is theoretically exact and stable when the reconstruction is con-
sistent, i.e., identical to the ground truth when the algorithm is applied to noise-free data with
infinite spatial and temporal resolution, and when the reconstruction is stable, i.e., robust for finite
resolution effects and data noise [Noo 09].
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1.2 Hardware Variants

The typical clinical workflow requires high-speed reconstructions in order to enable
high patient throughput or to avoid an interruption of patient treatment during
interventional procedures. From the physician’s perspective, it is required that the
computation of the reconstructed volume from a set of acquired two-dimensional
X-ray projections terminates roughly with the end of the scanning period so that
no additional time delay is experienced and the volume dataset can be analyzed
immediately after the scan.

The computational complexity of the algorithms mentioned in the previous section
depends linearly on both the number of projection images that are acquired during the
scan period as well as the number of voxels of the volume dataset to be reconstructed.
In order to fulfill the physician’s challenging performance requirements, it is inevitable
to employ fast compute hardware. There is in fact a variety of compute hardware
that can be employed to design high-speed image reconstruction systems. We are
going to evaluate following hardware variants in this thesis (see also Figure 1.2):

1. The amazing progress in VLSI design2 has led to the development of micro-
processors consisting of several independent compute cores that can execute
multiple application tasks in parallel. The cores belonging to one central pro-
cessing unit (CPU) often share certain levels of the on-chip memory hierarchy
(e.g., on-chip Level 2 (L2) caches). These processors are commonly referred to
as multi-core or even as many-core CPUs. Current CPU manufacturers such
as Intel and AMD currently provide up to eight compute cores per CPU with
forecasts predicting 32 and even more parallel cores per CPU chip.

2. The Cell Broadband Engine Architecture (CBEA), which was developed by
IBM, Sony, and Toshiba, represents a special member of the family of multi-core
CPUs. The CBEA is characterized by an architecture that covers a control core
as well as eight high-performance processing cores. While the CBEA primarily
targets the gaming industry, it has been demonstrated that this architecture is
suitable for various numerically intensive applications in industrial and medical
environments as well.

3. Standard graphics boards based on powerful graphics processing units (GPUs)
can serve as another hardware alternative for high-performance computing ap-
plications. Current GPUs offer massively parallel processing capability that can
particularly handle the computational complexity of three-dimensional cone-
beam reconstruction. Nvidia has recently developed the fundamentally new
easy-to-use computing paradigm CUDA (Compute Unified Device Architecture)
for solving complex computational problems on the GPU. CUDA offers a uni-
fied hardware and software solution for parallel computing on CUDA-capable
Nvidia GPUs, supporting the standard C programming language together with
high-performance computing numerical libraries3. This enables programmers

2 Very-large-scale integration (VLSI) is the process of creating integrated circuits by combining
thousands of transistor-based circuits into a single chip.

3http://developer.nvidia.com/object/cuda.html



www.manaraa.com

1.2. Hardware Variants 5

(a) Intel (b) Cell processor

(c) NVIDIA Tesla C1060 (d) ImageProX

Figure 1.2: Considered hardware variants. Image (a) is taken
from http://www.intel.com/pressroom/kits/quadcore/index.htm, Image (b) is
taken from http://en.wikipedia.org/wiki/File:Cell-Processor.jpg, and Image (d) is
by courtesy of Siemens AG.

that are not specialists in computer graphics to benefit from the processing
power of graphics cards. The implementation of the reconstruction task can
now be accomplished without knowing how to (ab)use the existing application
programming interfaces for general-purpose computing; e.g., OpenGL, DirectX,
or the Brook language.

4. Reconfigurable microchips represent another architecture alternative for accel-
erating numerically intensive algorithms. FPGAs (field-programmable gate ar-
rays) and CPLDs (complex programmable logic devices) are the most promi-
nent representatives of reconfigurable circuits [Meye 08]. In general, FPGAs
are characterized by a larger number of arithmetic units than CPLDs. Several
independent vendors offer FPGA-based accelerator cards for use in general-
purpose computer environments, along with appropriate development kits for
software and firmware. Today, many CT devices employ FPGA hardware for
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image reconstruction that has been developed by the manufacturer of the CT
system itself in order to precisely meet the manufacturer’s requirements.

1.3 Related Work

Published results using PC-based implementations still need more than several min-
utes for the reconstruction at high spatial resolution such as volumes of 5123 voxels
or even more [Wies 00, Yu 01, Kach 06]. Therefore, many specialized hardware plat-
forms have been designed in the past to reconstruct volumes from cone-beam pro-
jections, ranging from dedicated hardware solutions like FPGAs [Trep 02, Godd 02,
Heig 07] and ”digital signal processors“ (DSPs) [Neri 07, Lian 10] to clusters of work-
stations [Reim 96, Laur 98].

Recently, a flat-panel cone-beam back-projection was published using one of the
two Cell processors of a dual Cell Blade [Kach 07]. The results are comparable to
the performance of our Cell-based back-projection module in this thesis. The same
implementation approach was used in [Yan 08, Xu 07] demonstrating a graphics-based
implementation using OpenGL.

The most time-consuming operation in the inner loop of reconstruction is the ratio
computation due to the non-linear perspective projection model. Our approach avoids
image rectification as suggested by [Ridd 06] and used by [Kach 07, Yan 08, Xu 07] that
leads to the elimination of the homogeneous division, but introduces an additional
low-pass filtering operation on the projection.

In order to implement the back-projection on GPUs, OpenGL and shading lan-
guages are still used in many publications [Muel 07, Chur 07]. In comparison to the
traditional graphics-based implementation methods, our CUDA-based implementa-
tion of cone-beam reconstruction has even a slightly improved reconstruction speed.

In [Hill 09] an interesting GPU-based reconstruction approach is demonstrated
which does a high-speed reconstruction of an arbitrary volume slice on-demand when
it is requested by the visualization software.

Only few publications, however, address all time-consuming reconstruction tasks,
filtering and back-projection, in a single publication. Moreover, a direct comparison of
these results is not always possible in an objective manner since different algorithms,
datasets and acquisition geometries were used.

1.4 Scope and Main Contribution of this Thesis

This thesis presents a detailed overview of the aforementioned hardware platforms
and their application to the three-dimensional image reconstruction task in CT.

In the first part of this thesis, we develop and evaluate an implementation ap-
proach for the most commonly used reconstruction algorithm in practical cone-beam
CT scanners; the FDK method. We outline the challenges to implement this algo-
rithm for real CT systems that usually deviate slightly from the ideal Feldkamp geom-
etry. In this regard the main contribution of this thesis, however, can be classified as
a thorough optimization and evaluation of computational performance using different
hardware platforms. Several parallel implementations are developed – each of them is
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specially suited for one of the mentioned acceleration devices. Our optimized imple-
mentation of the FDK method has been presented at the SPIE Medical Imaging Con-
ference 2007 [Sche 07c] for the CBEA and for graphics accelerators at the IEEE Nu-
clear Science Symposium and Medical Imaging Conference 2007 [Sche 07b]. These
implementations enable a novel reconstruction mode where an FDK reconstruction is
computed on-the-fly at the same time the data is acquired by the C-arm device. The
reconstructed volume can thus be shown to the physician in real time immediately
after the last projection image has been acquired.

During our evaluations we use the same two medical datasets, which were ac-
quired using a standard C-arm device, on each of the considered hardware platforms.
Therefore, we are able to present a fair comparison of the currently most promis-
ing hardware variants in the context of cone-beam reconstruction. This is a novel
practice since we use the same implementation approach of the FDK method – suit-
able for practical cone-beam CT scanners – and the same datasets for the evaluation
of several state-of-the-art hardware architectures. This comparative study has been
submitted to the Journal of Medical Physics.

We further present both the design and the implementation of a software archi-
tecture that is used by all of our optimized implementations. Software engineering
techniques play an important role in the overall design and can improve the effi-
ciency, flexibility, and portability of the whole reconstruction system. We show how
this design can act as a hardware abstraction layer on top of different acceleration
architectures. The design and implementation of our software architecture has been
presented at the International Conference on Software Engineering 2008 [Sche 08].

Since the FDK method is of an approximative nature, its reconstruction results
suffer from severe artifacts in certain situations. In the second part of this thesis
we select two alternative approaches to cone-beam reconstruction, which are able to
deliver significantly improved image quality when compared to the results of the FDK
method.

We show for the first time a highly optimized implementation of a theoretically
exact and stable FBP algorithm. We select the M-line method, which is well suited
for the non-ideal acquisitions in practical cone-beam CT scanners, and at the same
time totally resolves the problem of cone artifacts in FDK reconstructions. We fur-
ther demonstrate on-the-fly reconstruction on a dual Cell Blade using our optimized
CBEA-based implementation. The performance-optimized version of the M-line
method has been presented at the International Meeting on Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear Medicine 2007 [Sche 07a].

Additionally, we present an iterative reconstruction approach with a strong focus
on the CUDA-based optimization of its most time-consuming processing steps; the
forward-projection and the back-projection. Iterative approaches can be used when
analytic algorithms such as the FDK method and the M-line method do not achieve
good image quality. For example this is the case when a sufficiently large number
of projections is not feasible or simply not desired to measure. Iterative approaches
have also the opportunity to achieve better image quality when the projections are
not uniformly distributed over the scan trajectory. Our optimized CUDA-based im-
plementation of the forward- and back-projection module has been presented at the
International Workshop on New Frontiers in High-performance and Hardware-aware
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Computing 2008 [Wein 08] and at the IEEE Nuclear Science Symposium and Medical
Imaging Conference 2009 [Keck 09a]. Furthermore, our optimized implementations
of both the forward- and the back-projection are used in an ongoing research project
at the University of Erlangen-Nuremberg, Chair of Computer Science 5 (Pattern
Recognition) [Keck 09b].

1.5 Outline
The structure of this thesis is as follows. Chapter 2 describes several reconstruction
methods for computing a volumetric representation of a scanned object from a set
of two-dimensional X-ray projection images. In particular we present the approxi-
mate FDK method (Section 2.2), the theoretically exact and stable M-line method
applied to a short-scan circle-plus-arc acquisition (Section 2.3.1) and the simultaneous
algebraic reconstruction technique as a representative of the iterative approaches (Sec-
tion 2.3.2).

Chapter 3 contains an overview of the underlying software layer that we have
developed in order to facilitate the integration of hardware accelerators into our
image reconstruction software infrastructure.

The architectures of the considered hardware variants and efficient implementa-
tions of the FDK reconstruction method on these hardware platforms are presented
in Chapters 5 to 7. Each Chapter addresses a single hardware architecture.

In Chapter 4, we discuss our CBEA-based implementation and present corre-
sponding performance results. Chapter 5 then focuses on multi-core CPUs and again
summarizes our results. In Chapter 6, we outline CUDA-based implementations on
Nvidia graphics cards. Chapter 7 contains a description of a highly efficient imple-
mentation using the FPGA-based hardware accelerator platform ImageProX, which
was developed by Siemens Healthcare.

In the following chapter (Chapter 8) we focus on two alternative reconstruction
algorithms. In particular we present a highly optimized CBEA-based implementation
of the M-line method (Section 8.1) and a CUDA-accelerated version of the most
computationally demanding processing steps of an iterative method (Section 8.2).

Finally, in Chapter 9, we compare our results, draw our final conclusions, and
discuss possible future directions of research in the field of hardware-accelerated cone-
beam CT reconstruction.
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Chapter 2

Algorithms for Cone-Beam Image
Reconstruction

There exist several reconstruction methods for computing a volumetric representa-
tion of a scanned object from a set of two-dimensional X-ray projection images.
However, the most commonly applied method in practical cone-beam CT systems is
the approximate FDK method. After we give some prerequisites that are necessary
to understand the following descriptions, we present in Section 2.2 the FDK method,
discuss possible implementation strategies (Section 2.2.2) that can be applied to prac-
tical cone-beam systems and analyze the time complexity of the involved algorithmic
steps (Section 2.2.3).

Although many CT systems use the FDK method to solve the 3-D image re-
construction task, it is not without its short-comings. Therefore, we describe in
Section 2.3 two alternative approaches: the theoretically exact and stable M-line
method applied to a short-scan circle-plus-arc acquisition (Section 2.3.1) and the
simultaneous algebraic reconstruction technique as a representative of the iterative
approaches (Section 2.3.2). The M-line method totally resolves the problem of cone
artifacts, which result from the approximative nature of the FDK method. Iterative
approaches can be used when analytic algorithms such as the FDK method and the
M-line method do not achieve good image quality. For example this is the case when
a sufficiently large number of projections is not feasible or simply not desired to mea-
sure. Iterative approaches also have the opportunity to achieve better image quality
when the projections are not uniformly distributed over the scan trajectory.

2.1 Prerequisites
The task in 3-D image reconstruction is to recover the function of X-ray attenuation
coefficients f(x) of an object under examination, provided a set of line integrals

g(λ, θ) =

∫ ∞

0

f(a(λ) + tθ)dt . (2.1)

Here, the 3-D curve a(λ) describes the corresponding position of the X-ray source
with λ varying over a finite interval of R, and the unit vector θ represents the direction
of the respective ray.

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
Cone-Beam CT Reconstruction, DOI 10.1007/978-3-8348-8259-2_2, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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If we assume a flat-panel detector located at a distance D from the current source
position, each detector value at coordinates (u, v)T refers to an integral along a
straight line with direction

θ(u, v) = (ueu + vev −Dew) /
√
u2 + v2 + D2 . (2.2)

Here, the detector coordinates are identified by two orthogonal unit vectors eu and ev,
and the origin (0, 0)T of the detector coordinate system (DCS) is the orthogonal
projection of a(λ) onto the detector. The unit vector ew = eu × ev points from the
origin of the DCS towards the source position. The ray that hits the detector at
the origin of the detector coordinate system is commonly referred to as principal ray,
while the respective intersection point is usually referred to as principal point. The
set of rays corresponding to a certain source position a(λ) and a certain flat-panel
detector position thus geometrically forms a cone-beam. Throughout this thesis we
refer to the resulting 2-D X-ray images as cone-beam projections. This scan geometry
is illustrated in Figure 2.1.

2.2 The Feldkamp Algorithm

In 1984, Feldkamp, Davis, and Kress published an algorithm for circular cone-beam
tomography, which is still widely used in state-of-the-art cone-beam scanning devices;
e.g., C-arm CT. This algorithm is usually referred to as Feldkamp method or as FDK
method [Feld 84]. It represents an analytical 3-D reconstruction method resulting in
a filtered back-projection scheme. It can be understood as an extension of exact
2-D reconstruction algorithms for fan-beam projections [Kak 01] to the 3-D case by
properly adapting the weighting factors.

The Feldkamp algorithm is based upon a circular trajectory, as is shown in Fig-
ure 2.1. The X-ray source rotates along an ideal circle of radius R with center point
O in the midplane about the axis of rotation that is defined by the point O and
the direction ez. Each point a(λ) on the source trajectory with λ representing the
rotation angle of the source-detector assembly expressed in radians is thus given by
the vector

a(λ) = (R cosλ,R sinλ, 0)T for λ ∈ [0, 2π[ , (2.3)

where the coordinates on the right-hand side refer to the fixed right-handed world
coordinate system defined by its origin O and the unit vectors ex, ey, and ez. Then,
the aforementioned unit vectors eu, ev and ew are given as the rotated coordinate
axes

eu(λ) = (− sinλ, cosλ, 0)T , (2.4)
ev = (0, 0, 1)T , (2.5)

ew(λ) = (cosλ, sinλ, 0)T = eu(λ)× ev , (2.6)

where the coordinates on the right-hand sides again refer to the fixed world coordinate
system. As is illustrated in Figure 2.1, these axes are obtained from the x-, y- and
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Figure 2.1: Ideal Feldkamp geometry. The X-ray source rotates along an ideal circle
of radius R with center point O in the midplane about the axis of rotation that
is defined by the point O and the direction ez. The rotation direction is given by
the angle λ in counterclockwise direction. D is the orthogonal distance between
a(λ) and the corresponding detector plane. Four different coordinate systems are
shown: the world coordinate system (WCS), the camera coordinate system (CCS),
the detector coordinate system (DCS), and the pixel coordinate system (PCS). The
voxel coordinate system (VCS) is not shown in this figure. The cylindrical field-of-
view (FOV) is indicated by the inner circle. Only points inside the FOV can be
reconstructed.

z-axes by a rotation of angle π/2 + λ about the z-axis in counter-clockwise direction
and then flipping the direction of ew(λ).

Throughout this thesis we use the notation “ .̌ ” to denote quantities that refer
to coordinates of the pixel coordinate system (PCS) or the voxel coordinate sys-
tem (VCS).

2.2.1 Algorithmic Steps

In order to approximately reconstruct a value f(x) at any position x = (x, y, z)
within the support of the object density function f using the Feldkamp algorithm,
the following algorithmic steps must be applied successively1.

1 Note that the Feldkamp algorithm is only an approximate method for 3-D reconstruction. This
results from the fact that a circular scan trajectory necessarily leads to an incomplete sampling of
the Radon space, see [Feld 84].
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Figure 2.2: Illustration of the ramp filter hramp. On the left side the impulse response
of the ramp filter is shown. On the right side the ideal filter response is shown in the
frequency domain. It has been band-limited to 1/(2 du). Here, du denotes the width
of a pixel in direction eu.

Step 1 – Filtering. Each projection g(λ, θ(u, v)) is transformed into a filtered
projection gF (λ, u, v) according to the following steps F1 and F2:

F1 – Cosine Weighting. Weight the data according to

g1(λ, u, v) =
D√

u2 + v2 + D2
g(λ, θ(u, v)) , (2.7)

where the factor D/
√
u2 + v2 + D2 represents the cosine of the angle between the

principle ray of the cone-beam hitting the detector at the origin of the DCS and the
ray hitting the detector at position (u, v)T , see again Figure 2.1.

F2 – Ramp Filtering. Ramp-filter the projection images row-wise (i.e., with re-
spect to u) by computing

gF (λ, u, v) = g1(λ, u, v) ∗ hramp(u) , (2.8)

where hramp denotes the ideal ramp filter (see Figure 2.2) and ”∗” denotes the con-
volution operator. This step corresponds to a 1-D convolution along lines on the
detector that are parallel to eu(λ).

Step 2 – Back-Projection. Back-project the filtered projection gF (λ, u, v) into
the image space to obtain an approximation f̂ of f at each point x according to

f̂(x) =
1

2

∫ 2π

0

μ(λ, x)gF (λ, u(λ, x), v(λ, x))dλ , (2.9)

where u and v are the respective detector coordinates given by

u(λ, x) = −D 〈(x− a(λ)), eu〉
〈(x− a(λ)), ew〉

, (2.10)

v(λ, x) = −D 〈(x− a(λ)), ev〉
〈(x− a(λ)), ew〉

, (2.11)
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and μ(λ, x) is a point-dependent distance weight according to

μ(λ, x) =
R2

〈(x− a(λ)), ew〉2
. (2.12)

Here, 〈., .〉 denotes the inner product. For a detailed derivation, we refer to [Kak 01].
For short-scan acquisitions the back-projection interval has to be restricted to

the covered angular range of the scan, and before the computation of (F1) an addi-
tional data redundancy weighting step, which is commonly referred to as (generalized)
Parker weighting [Silv 00, Park 82] has to be applied.

In order to assess the performance using the acceleration architectures under
consideration, we restrict our evaluation to the most compute-intensive algorithmic
tasks; the ramp filtering step (F2) as well as the back-projection step (Step 2).

2.2.2 Implementation Strategies

2.2.2.1 Ramp Filtering

The FDK reconstruction approach requires to filter the rows of the projections using
a high-pass filter in the direction of eu. An ideal acquisition would ensure that the
vector eu and thus the detector rows be parallel to the plane of the source trajectory.
In practical cone-beam CT systems such as C-arm scanners this assumption may be
violated due to deviations caused by mechanical inaccuracies during the acquisition
process. However, we perform the ramp filtering step in the direction of the detector
rows, regardless of any reconstruction inaccuracies introduced by this assumption of
an ideal scan geometry2.

Various filter kernels are used in practice; e.g. combinations of ramp filters and
smoothing filters. Due to the typical filter mask sizes of 60 non-zero elements and
more, convolutions are practically computed in the Fourier domain due to the reduced
computational complexity. For example, considering the number of required floating-
point operations for convolving a single image row with 1024 pixels the break-even
point is already reached when filter mask sizes are larger than 17 pixels (see Sec-
tion 2.2.3 for further details).

As is explained in detail in [Kak 01], this convolution algorithm requires the com-
putation of the discrete Fourier transform (DFT) of each input signal (projection
row) as well as the DFT of the spatial filter kernel. The actual convolution of any
two vectors in Fourier space is then performed by component-wise multiplication of
their Fourier components. Then, the inverse DFT (IDFT) of this product is com-
puted in order to transform the filtered projection rows back into the spatial domain.
The input vectors and the filter kernels are zero-padded up to a suitable power of
two in order to avoid aliasing effects that may severely spoil the results [Gonz 08].
Throughout this thesis we denote by convolution length the zero-padded size of the
input vector or filter kernel.

2 In a non-ideal scan geometry it is possible that the detector rows and thus the vector eu are
slightly tilted with respect to an ideal Feldkamp-like acquisition. In such a situation the vector eu
and the geometrical parameters of the X-ray camera and the detector can be extracted from the
corresponding projection matrix (see Appendix A), which is usually determined by calibration. See
e.g. [Wies 00] for more details.
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On the considered hardware platforms, computationally efficient FFT cores are
available for the calculation of complex fast Fourier transforms (FFT). Since it is
possible to compute the Fourier-based convolution for two (real-valued) input vectors
simultaneously using complex FFTs, we always convolve two adjacent image rows of
a projection with the given filter kernel simultaneously. One image row defines the
real input while the second one refers to the imaginary input. All of our optimized
implementations compute the convolution by a complex 1-D FFT followed by the
point-wise multiplication of the DFT of the filter kernel and the computation of the
inverse FFT (IFFT) of the respective point-wise product.

2.2.2.2 Back-Projection

Back-projection can either be implemented using a voxel- or a ray-driven volume
update strategy.

In the ray-driven approach it is required to follow the rays defined by the pixels
in the projection image to the source position through the volume. Each affected
volume voxel gets an appropriate weighted increment depending on how much the
current ray affects the respective voxel. This approach, however, is hard to parallelize
for the considered hardware platforms. Each time a voxel is hit by a ray and thus gets
updated, it must be ensured that no other ray does an update of that voxel at the
same time. Otherwise wrong voxel accumulation may occur due to race conditions
during voxel read/write accesses. Moreover, ray-based back-projection approaches
tend to introduce high-frequency artifacts that manifest as Moire patterns in the
final reconstruction result [De M02, De M04].

For these reasons, we decided to implement the voxel-driven back-projection
scheme on the considered acceleration hardware. Each voxel can be updated in-
dependently by calculating the detector position where the ray emanating from the
source and passing the considered voxel center hits the projection image. This re-
sults in an embarrassingly parallel problem, because projection values are accessed
read-only, and all voxel accesses for the same projection are independent of each
other.

Because of deviations due to mechanical inaccuracies of real cone-beam CT sys-
tems such as mobile and stationary mounted C-arm scanners, the back-projection is
commonly not computed using Equations (2.9), (2.10), and (2.11) directly. Instead,
the mapping between voxels of the volume and projection image positions can be
described by introducing homogeneous coordinates and a corresponding 3 × 4 pro-
jection matrix P(λ) for each X-ray source position a(λ) at rotation angle λ along
the trajectory [Hart 03]. The projection matrices are commonly estimated during a
calibration step that must be accomplished only when the cone-beam CT scanner
is installed or maintained. See for example Wiesent et al. [Wies 00] for more details
about the calibration of cone-beam CT systems.
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In an ideal geometry as described in Section 2.2, the projection matrices operat-
ing on points given in world coordinates can be calculated analytically from Equa-
tions (2.10) and (2.11):

P̃(λ) =

⎡
⎣ −D sinλ D cosλ 0 0

0 0 D 0
− cosλ − sinλ 0 R

⎤
⎦ . (2.13)

In order to express the resulting detector coordinates with respect to the PCS,
the necessary transformations can be applied by multiplying a 3× 3 matrix K̃(λ) to
the projection matrix of Equation (2.13) from the left3:

P(λ) = K̃(λ)P̃(λ) =

⎡
⎣

1
du

0 ǔo
0 1

dv
v̌o

0 0 1

⎤
⎦ P̃(λ) . (2.14)

Here, du and dv denote the pixel width in u-direction and v-direction of the detector,
respectively. See Figure 2.1 for a clarification of the symbols used in Equations (2.13)
and (2.14). This step transforms world coordinates into pixel coordinates and trans-
lates any possible offset of the principal point. See Appendix A for further details.

Likewise the projection matrix can be modified by multiplying a 4×4-matrix from
the right in order to include the necessary transformations from voxel coordinates to
world coordinates. This transform comprises the necessary scaling and translation of
the voxel coordinates to a representation in the world coordinate system:

T(λ) =

⎡
⎢⎢⎣

dx 0 0 tx
0 dy 0 ty
0 0 dz tz
0 0 0 1

⎤
⎥⎥⎦ . (2.15)

Here, dx, dy, and dz denote the voxel widths in x-, y-, and z-direction of the world
coordinate system, respectively, while tx, ty, and tz represent the translation of the
voxel coordinate system relative to the world coordinate system in units of world
coordinates.

The final projection matrix operating on points given in voxel coordinates in an
ideal Feldkamp-like acquisition is then given as

P̌(λ) = P(λ)T(λ) . (2.16)

Back-projection may now be computed by calculating a matrix-vector product for
each voxel and each projection in order to determine the corresponding homogeneous
representation of the projection value, followed by the homogeneous division to reveal
the actual detector position (see Algorithm 1)4. The intermediate results ǔ and v̌
represent detector positions given as column index and row index, respectively, as non-
integer numbers. The computation of the actual voxel increment is hidden behind
the function ”fetch” that may be based on nearest neighbor or bilinear interpolation
of the filtered projection values, for example.

3Note that in an ideal setting K̃(λ) covers a scaling operation and a translation operation only.
4Any matrix entry is referenced by its row index and its column index. P[i, j] thus refers to the

entry in the ith row and the jth column. Throughout this thesis, arrays are assumed to be 0-based.
Consequently, P[0, 0] refers to the upper left entry of matrix P.
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Algorithm 1: Voxel-driven back-projection.
Input: Np filtered projection images Ii , 0 ≤ i < Np

Input: Np projection matrices P̌i , 0 ≤ i < Np

Data: volume V consisting of Nx ×Ny ×Nz voxels
for (i = 0; i < Np; i = i + 1) do1

for (ž = 0; ž < Nz; ž = ž + 1) do2

for (y̌ = 0; y̌ < Ny; y̌ = y̌ + 1) do3

for (x̌ = 0; x̌ < Nx; x̌ = x̌ + 1) do4

// Compute homogeneous image coordinates
r = P̌i[0, 0] · x̌ + P̌i[0, 1] · y̌ + P̌i[0, 2] · ž + P̌i[0, 3];5

s = P̌i[1, 0] · x̌ + P̌i[1, 1] · y̌ + P̌i[1, 2] · ž + P̌i[1, 3];6

t = P̌i[2, 0] · x̌ + P̌i[2, 1] · y̌ + P̌i[2, 2] · ž + P̌i[2, 3];7

tinv = 1/t;8

ǔ = r · tinv; // Dehomogenize9

v̌ = s · tinv; // Dehomogenize10

μ = tinv · tinv; // Distance weight11

V[x̌, y̌, ž] = V[x̌, y̌, ž] + μ · fetch(Ii, ǔ, v̌); // Accumulate12

end13

end14

end15

end16

For neighboring voxels, it is sufficient to increment the homogeneous detector
coordinates by the appropriate column of P̌(λ) [Wies 00]. Algorithm 2 shows the
pseudo-code for the computationally optimized version (incremental version) of the
back-projection step. First, we calculate in each loop the base increment for the
homogeneous detector coordinates. Then, in each loop we multiply the actual voxel
index with the respective voxel increments before adding them to the base increments
of the current loop. This approach requires an additional floating-point multiplica-
tion for each voxel to compute the homogeneous detector coordinates. We avoid
to simply increment the actual computed homogeneous detector coordinates, which
would save the additional floating-point operation but introduces numerical prob-
lems. The hardware variants, which we consider throughout this thesis, provide a
special multiply-add floating-point operation such that both approaches require only
a single instruction.

The homogeneous divide operation in Algorithm 2 cannot be avoided for voxel
position increments parallel to the z-axis of the VCS because, in practical cone-beam
CT systems, the projection planes are slightly tilted with respect to the z-axis due
mechanical inaccuracies. We intentionally avoided the use of a detector rebinning
technique that virtually aligns the detector to one of the volume axis because it
impairs the resulting image quality and requires additional computations for the
initial rebinning step [Ridd 06].

Note that, in Algorithm 1 and Algorithm 2, the voxel-specific distance weight μ =
μ(λ, x) is determined by exploiting a computational trick. Since each projection
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Algorithm 2: Incremental version of voxel-driven back-projection.
Input: Np filtered projection images Ii , 0 ≤ i < Np

Input: Np projection matrices P̌i , 0 ≤ i < Np

Data: volume V consisting of Nx ×Ny ×Nz voxels
for (i = 0; i < Np; i = i + 1) do1

for (ž = 0; ž < Nz; ž = ž + 1) do2

// Compute z-increments
rz = P̌i[0, 2] · ž + P̌i[0, 3];3

sz = P̌i[1, 2] · ž + P̌i[1, 3];4

tz = P̌i[2, 2] · ž + P̌i[2, 3];5

for (y̌ = 0; y̌ < Ny; y̌ = y̌ + 1) do6

// Compute y-increments
ry = P̌i[0, 1] · y̌ + rz;7

sy = P̌i[1, 1] · y̌ + sz;8

ty = P̌i[2, 1] · y̌ + tz;9

for x̌ = 0; x̌ < Nx; x̌ = x̌ + 1) do10

// Compute homogeneous image coordinates
r = P̌i[0, 0] · x̌ + ry;11

s = P̌i[1, 0] · x̌ + sy;12

t = P̌i[2, 0] · x̌ + ty;13

tinv = 1/t;14

ǔ = r · tinv; // Dehomogenize15

v̌ = s · tinv; // Dehomogenize16

μ = tinv · tinv; // Distance weight17

V[x̌, y̌, ž] = V[x̌, y̌, ž] + μ · fetch(Ii, ǔ, v̌); // Accumulate18

end19

end20

end21

end22

matrix P(λ) is only defined up to a scale factor, we normalize P(λ) such that
P(λ)[2, 3] = 1. In this case, it follows from Equations (2.12) and (2.14) that

μ(λ, x) =
R2

〈(x− a(λ)), ew〉2
=

1

t2
. (2.17)

Consequently, only one additional multiply operation is necessary to compute the
distance weight itself (i.e., t−1 · t−1) and another one to compute the weighted voxel
increment μ · fetch(Ii, ǔ, v̌) afterwards.

2.2.3 Complexity Analysis

In the last section we presented implementation approaches for the two most time-
consuming processing steps of filtered back-projection algorithms; the filtering step
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as well as the subsequent back-projection step. In this section we will analyze their
time complexity.

2.2.3.1 Filtering

As mentioned in Section 2.2.2.1 the filtering step can be implemented in the spatial
or in the frequency domain. In the following we estimate the number of required
floating-point operations required to implement each variant.

In the spatial domain the 1-D discrete convolution of the image rows of g with
a filter kernel given as a 1-D mask h and consisting of NM = 2m + 1 elements (cf.
Equation 2.8) can be computed by

g(ǔ, v̌) =
m∑

k=−m
h(k)g(ǔ− k, v̌) . (2.18)

The convolution for an image pixel requires one multiplication and one addition for
each mask element, which results in

Nspatial = 2NMNuNvNp (2.19)

floating-point operations for Np projection images consisting of Nv rows and Nu

columns. With N = Nu = Nv = Np the discrete 1-D convolution of the projection
image rows in the spatial domain has a time complexity of O(N3) for filter kernels
with fixed impulse.

In the following we analyze the number of required floating-point operations when
computing the 1-D convolution in the frequency domain. In order to transform an
image row into the frequency domain and back to the spatial domain two FFTs
have to be computed. The classic ”radix-2“ algorithm presented by Cooley and
Tukey [Cool 65] requires a number of floating-point operations for the computation of
a 1-D complex FFT that is proportional to 5N log2 N . A more optimized variant has
been published by [John 07]. Here, the number of required floating-point operations
is only

NFFT =
34

9
N log2 N−

124

27
N−2 log2 N−

2

9
(−1)log2N log2 N+

16

27
(−1)log2N+8 (2.20)

for a convolution length of Nconv = N . Due to zero-padding Nconv is usually chosen
such that Nconv = 2Nu. The complex multiplication in the frequency domain requires
only two additions and two multiplications for each computed complex frequency
value since the used filter kernels have either only real values or imaginary values in the
frequency domain. As already mentioned in Section 2.2.2.1 it is possible to compute
the Fourier-based convolution for two (real-valued) input vectors simultaneously using
complex FFTs. Therefore,

Nfrequency = NFFT + 4Nconv (2.21)

floating-point operations are required for a single input vector resulting in a time
complexity of O(N3 log2 N) when N = Nconv = Nu = Nv = Np.

Figure 2.3 shows the break-even points for various convolution length according
to our analysis. Therefore, it is more efficient to implement a 1-D convolution in the
frequency domain if filter mask sizes are larger than 19 pixels when Nconv = 2048 or
21 pixels when Nconv = 4096.
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Figure 2.3: Comparison of computational efficiency for spatial- and frequency-based
convolution filtering. The break-even point is given as the largest filter mask size
where convolution filtering in the spatial domain is still superior than frequency-based
convolution. When using larger filter mask sizes frequency-based convolution is more
efficient. The break-even points are given for two well-known FFT implementations.

2.2.3.2 Back-Projection

The time complexity of back-projection is significantly higher. In our voxel-based
approach it is necessary to compute the back-projection for each voxel of the vol-
ume (Nvoxels = NxNyNz) and each projection image Np. The number of voxels in
each direction usually equals the number of projection images (Nx = Ny = Nz = Np).
Therefore, the time complexity of back-projection is O(N4).

The voxel-based back-projection according to Algorithm 1 requires for each voxel
nine multiplications and nine additions to compute the matrix vector product, two
multiplications and two divisions for the computation of the pixel coordinates (deho-
mogenize), two multiplications to apply the voxel-dependent distance weight, and one
addition to add the computed voxel increment to the previous voxel value. Therefore,
the back-projection of a single projection image requires

NBp = (24 + Ni)Nvoxels (2.22)

floating-point operations. Here, Ni is the number of floating-point operations that
are required for the interpolation when accessing the projection image (function fetch
in Algorithm 1).

Nearest neighbor interpolation can be implemented by incrementing the computed
coordinates ǔ and v̌ by 0.5 before they are truncated to integer numbers. This incre-
ment can be integrated into the projection matrix as a translation of the PCS, and
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Algorithmic Step Fraction of Computational Time

Pre-processing (without filtering) 5 %
Filtering 19 %
Back-projection 71 %
Post-processing 5 %

Table 2.1: Fractions of computational time in a practical cone-beam CT system for
different processing steps. Table taken from [Heig 07].

thus Ni = 0 for nearest neighbor interpolation. However, for bilinear interpolation
Ni = 10 (six additions and four multiplications). Note that some hardware archi-
tectures, e.g. graphics accelerators, implement this operation in hardware resulting
in Ni = 1 or even Ni = 0.

The number of required floating-point operations can be significantly reduced
when using the incremental version of Algorithm 2. By the incremental computation
of the matrix vector product six multiplications and six additions are moved out of
the innermost loop. Therefore, the back-projection of a single projection image now
requires only

NBpIncr = (12 + Ni)Nvoxels + 6NyNz + 6Nz (2.23)

floating-point operations. Compared to Algorithm 1 this reduces the number of
required floating-point operations by over 35% when Ni = 10 or by nearly 50%
when Ni = 0.

2.2.3.3 Comparison of Computation Times

Heigl and Kowarschik presented a performance analysis considering all processing
steps in a practical C-arm CT system [Heig 07]. They measured relative timings of
each processing task on a single-core CPU for 543 projection images with 1240× 960
pixels each and a volume consisting of 512× 512× 440 voxels.

Table 2.1 shows the time fractions of the particular algorithmic steps. The pre-
processing tasks include intensity and beam hardening correction, scatter estimation
and correction, and truncation correction, while post-processing includes the sup-
pression of ring artifacts, which are caused by detector gain inhomogeneities. The
pre-processing and post-processing steps, which are not considered in this thesis, take
only 10% of the overall processing time. Therefore, our evaluation of filtering and
back-projection on different hardware acceleration platforms addresses over 90% of
the computational burden in a typical cone-beam CT system.

2.3 Selected Alternatives to the Feldkamp Algorithm

2.3.1 The M-Line Method

In medical imaging a high image quality is required. In the state-of-the-art FDK
method [Feld 84], however, the occurring cone artifacts may cover small object details
complicating their distinction.
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Figure 2.4: Geometry setup of the M-line reconstruction for the circle-plus-arc tra-
jectory. For each point x to be reconstructed there exists exactly one M-line and one
π-line. While the M-line defines the filtering lines (see also Figure 2.5), the π-line
determines the source positions on the trajectory, where the cone-beam projections
are back-projected onto x.

Theoretically exact and stable cone-beam reconstruction algorithms (e.g., the M-
line method [Pack 05]) provide excellent image quality without any cone artifacts.
Although the M-line approach is still of a filtered back-projection style, it has an
increased computational complexity as it requires additional computations for the
filtering of the projection images; e.g., derivative computation and filtering along
oblique lines in the projection. Thus, especially the filtering of projections incurs
much more computations to be performed by the image reconstruction hardware.

The M-line approach can be applied for C-arm CT [Hopp 06]. It is, however,
required that Tuy’s data completeness condition for image reconstruction is ful-
filled [Tuy 83]. According to Tuy it is possible to reconstruct the point x in a the-
oretically exact manner if and only if every plane through x intersects the source
trajectory at least once. This intersection should not happen tangentially to the
trajectory and not at an endpoint of the trajectory.

Due to the requirement of a complete cone-beam data acquisition, the source
trajectory has to be extended. In our case we have chosen a short-scan circle-plus-
arc acquisition where the source trajectory has been extended by an arc segment as
shown in Figure 2.4. This extension is a practical choice for nearly all existent C-arm
devices. Other trajectory extensions are also possible; e.g., the extension by a line
segment.

The M-line method introduces a specific point on the source trajectory, called the
M-point. In fact a different M-point could be selected for each point x within the



www.manaraa.com

22 Chapter 2. Algorithms for Cone-Beam Image Reconstruction

FOV

arc segment

circle segment

detector

M-point

M-line

x

x∗

a(λ)

a(λM)

a(λM)∗

Figure 2.5: Derivation of the filtering line on the detector plane for point x during
processing of the cone-beam projection corresponding to the source position at a(λ).
The filtering line for x is given by the projection of its M-line onto the detector plane.

support of the object density function f . However, in order to achieve an efficient
FBP formulation of the M-line approach, the M-point must be chosen fixed for each
point x to be reconstructed. The M-point should further be selected such that it is
(approximately) located in the middle of the circle segment [Hopp 06, Pack 05]. This
choice reduces artifacts resulting from axial data truncation in case of long objects.

For each projection the M-line associated with the point x is defined as the line
connecting the M-point with this point. As can be seen in Figure 2.5 the filtering line
for x is then given by the projection of its M-line onto the detector plane. All points
which are located in the plane defined by a(λ), a(λM), and x share the same filtering
line. Thus, filtering can be done independently of x on a one-dimensional family of
lines, prior to back-projection. This is a major advantage of the M-line method. It
allows the reconstruction to be done in a computationally efficient FBP form.

Reconstruction using the M-line approach can only be achieved for points that
are located on so called π-lines. A π-line is defined as a line connecting two differ-
ent points on the source trajectory. For example, in Figure 2.4 the red line is the
corresponding π-line of x connecting the point a(λ+

1 (x)) on the circle segment with
the point a(λ−

2 (x)) on the arc segment. For the circle-plus-arc trajectory it is shown
in [Kats 05] that each π-line is unique and that a large continuous volume is covered
by π-lines. Similar results can be obtained for the circle-plus-line trajectory [Kats 04].
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For each point x back-projection is carried out over three curve segments of
the circle-plus-arc trajectory (see Figure 2.4). The first curve segment is located
on the circle segment and goes from the selected M-point a(λM) = a(λ−

1 ) to the
point a(λ+

1 (x)), which is the intersection point of the π-line containing x with the
circle segment. The second curve segment reaches from the intersection point of the
π-line with the arc segment a(λ−

2 (x)) to the foot point of the arc segment a(λ+
2 ). Fi-

nally, the third curve segment is defined by the portion of the circle segment delimited
by the foot point of the arc segment a(λ−

3 ) and the selected M-point a(λM) = a(λ+
3 ).

In order to account for redundantly measured data, each of these segments is
given a different weighting factor. While the first segment has weight 1, the other
two segments are given a weighting factor of −1. This ensures a correct weighting
of redundantly measured cone-beam data. Thus, the final reconstruction result is
computed by subtracting the back-projection results of the last two segments from the
back-projection result of the first segment. For a detailed derivation of the algorithm,
we refer to [Pack 05].

2.3.1.1 Algorithmic Steps

To reconstruct a point x inside the support of the object with the M-line approach,
the following steps are applied successively.

Step 1 – Filtering. Each projection g(λ, θ(u, v)) is turned into a filtered projec-
tion gF (λ, u, v) according to the following steps F1 to F6:

F1 – Derivative. Compute the derivative of g(λ, θ(u, v)) with respect to λ along
a constant viewing direction θ(u, v)

g1(λ, u, v) =
∂

∂λ
g(λ, θ(u, v))

∣∣∣∣
θ(u,v)=fixed

, (2.24)

with θ(u, v) defined in Equation (2.2).

F2 – Cosine Weighting. Weight the data according to

g2(λ, u, v) =
D√

u2 + v2 + D2
g1(λ, u, v) . (2.25)

F3 – Forward Rebinning (M-line specific). Perform a forward rebinning from
detector coordinates (u, v)T to filtering line coordinates (u, s)T , where s identifies the
slope of the filtering line, according to

g3(λ, u, s) = g2(λ, u, v(u, s)) , (2.26)

where
v(u, s) = s(u− uM) + vM . (2.27)

Here, all filtering lines converge to the projection of the common M-point a(λM) onto
the detector. The projection a(λM)∗ of the M-point is given by

a(λM)∗ = (uM , vM)T . (2.28)
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Figure 2.6: Illustration of the Hilbert filter kernel. On the left side the impulse
response of the Hilbert filter is shown. On the right side the ideal filter response
is shown in the frequency domain. It has been band-limited to 1/(2 du). Here, du
denotes the width of a pixel in direction eu.

Consequently, each filtering line is uniquely identified by its slope and the mapping
is invertible. After forward rebinning each row of the rebinned detector holds the
values for exactly one filtering line.

F4 – Hilbert Filtering. Perform a one-dimensional Hilbert transform (see Fig-
ure 2.6) with respect to u by computing

g4(λ, u, s) =

∫ +∞

−∞

1

π(u− u′)
g3(λ, u

′, s)du′ . (2.29)

F5 – Backward Rebinning (M-line specific). In order to achieve a computa-
tionally more efficient back-projection, we avoid the direct back-projection from the
rebinned grid. Instead we perform a backward rebinning from filtering line coordi-
nates (u, s)T to detector coordinates (u, v)T according to

g5(λ, u, v) = g4(λ, u, s(u, v)) , (2.30)

where
s(u, v) =

v − vM
u− uM

. (2.31)

F6 – π-line Weighting. Perform π-line weighting according to

gF (λ, u, v) = m(λ, u, v)g5(λ, u, v) . (2.32)

The function m(λ, u, v) takes only values of zero or one and should be understood as
a 2-D weighting mask that accounts for a correct handling of the back-projection seg-
ments for each point x. It can be precomputed once after C-arm geometry calibration
as shown in [Hopp 06] (Section VI).
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The decision if the current source position is inside the back-projection interval
for a point x can be made either by projecting the circle segment to the detector
when the source is on the arc segment or by projecting the arc segment to the de-
tector when the source is on the circle segment (see Figure 2.7). Assume the source
position moves along the circle segment. Then the current source position is inside
the back-projection interval corresponding to point x when x projects to the right-
hand side of the projected arc segment. If x projects to the left-hand side of the arc
segment the current source position is outside of the back-projection interval. This
is true for every point on the line connecting the current source position and point x.
It follows that mask values depend only on the projection of x onto the detector. It
is therefore justified to create a 2-D weighting mask m(λ, u, v), which assigns each
detector point (u, v)T on the right-hand side a value of one, and a value of zero oth-
erwise. The same principle applies if the source moves along the arc segment. In this
case the current source position is inside the back-projection interval corresponding
to point x when x projects above the projected circle segment. Here, the weight-
ing mask m(λ, u, v) assigns each detector point (u, v)T on top of the projected circle
segment a value of one, and a value of zero otherwise.

Step 2 – Back-Projection. Back-project the filtered projection gF (λ, u, v) into
the image space to obtain f at each point x = (x, y, z)T according to

f(x) = − 1

2π2

3∑
q=1

tq

∫ λ+q

λ−q

1

| 〈(x− a(λ)), ew〉 |
gF (λ, u(λ, x), v(λ, x))dλ , (2.33)

where u and v are the detector coordinates corresponding to x and λ, given by

u(λ, x) = −D 〈(x− a(λ)), eu〉
〈(x− a(λ)), ew〉

, (2.34)

v(λ, x) = −D 〈(x− a(λ)), ev〉
〈(x− a(λ)), ew〉

, (2.35)

and t1 = 1, t2 = −1, t3 = −1; cf. Figure 2.4. The back-projection segments for
each point x are already handled by the multiplication with the π-line weighting
mask m(λ, u, v) in filtering step F6. Therefore, in Equation (2.33) we really used
λ+
1 and λ−

2 corresponding to the endpoints of the trajectory as the back-projection
interval limits instead of λ+

1 (x) and λ−
2 (x) for the first two segments, respectively.

This has the advantage that the different back-projection intervals do not depend
on the point x to be reconstructed. Because other exact cone-beam reconstruction
algorithms (e.g., [Kats 05]) can be implemented in a similar way, M-line specific steps
have been marked as such. As can be seen only the rebinning steps have to be
modified in order to account for other filtering directions.

2.3.1.2 Implementation Strategies

Derivative. The M-line method requires the computation of a view-dependent
derivative of the following form

∂

∂λ
g(λ, θ)

∣∣∣∣
θ=fixed

= lim
ε→0

g(λ + ε, θ)− g(λ− ε, θ)

2ε
(2.36)



www.manaraa.com

26 Chapter 2. Algorithms for Cone-Beam Image Reconstruction

FOV

arc segment

circle segment

π-line

x

a(λM)

a(λ+
1 (x))

source position inside source position outside

back-projection
interval of x

a(λ−
2 (x))

FOV

arc segment

circle segment

π-line

x

a(λM)

a(λ+
1 (x))

source position inside

source position outside

back-projection
interval of x

a(λ−
2 (x))

Figure 2.7: Illustration of π-line weighting. When the source is on the circle seg-
ment (top) the source is within the back-projection interval (shown in bold blue)
corresponding to the point x only if x projects to the right hand side of the pro-
jected arc segment. Otherwise x projects to the left hand side of the projected arc
segment. When the source is on the arc segment (bottom) the source is within the
back-projection interval corresponding to the point x only if x projects above the
projected circle segment. Otherwise x projects below the projected circle segment.
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as a first-processing step (see Equation (2.24)). Basically, g(λ, θ) has to be differenti-
ated with respect to λ while keeping the ray direction θ = θ(u, v) fixed. It is difficult
to implement this formula accurately because the sampled values of θ change with λ
as they are specified by the detector sampling and the position of the source and
detector relative to each other. Furthermore, the sampling in λ is often coarser than
the sampling on the detector. The chain-rule can be applied to the view-dependent
derivative as follows

∂

∂λ
g(λ, θ(u, v))

∣∣∣∣
θ(u,v)=fixed

=
∂

∂λ
g(λ, θ)

∣∣∣∣
θ=fixed

=

(
∂g

∂λ
+

∂g

∂u

∂u

∂λ
+

∂g

∂v

∂v

∂λ

)
(2.37)

with u and v given by

u = −D 〈θ, eu(λ)〉〈θ, ew〉
, (2.38)

v = −D 〈θ, ev(λ)〉〈θ, ew〉
. (2.39)

It can be seen that only the first term in Equation (2.37) requires the differentiation
with respect to λ. Compared to a straightforward implementation this approach often
yields a much higher resolution [Noo 03].

Replacing u and v by the expressions in Equations (2.38) and (2.39), respectively,
we further get

∂u

∂λ

∣∣∣∣
θ=fixed

=
−D(〈θ, e′u(λ)〉 · 〈θ, ew(λ)〉 − 〈θ, eu(λ)〉 · 〈θ, e′w(λ)〉)

〈θ, ew(λ)〉2
, (2.40)

∂v

∂λ

∣∣∣∣
θ=fixed

=
−D(〈θ, e′v(λ)〉 · 〈θ, ew(λ)〉 − 〈θ, ev(λ)〉 · 〈θ, e′w(λ)〉)

〈θ, ew(λ)〉2
. (2.41)

Here, we assumed in favor of a computationally more efficient implementation that D
does not depend on λ, which may not be guaranteed in a non-ideal acquisition but
practically introduces only a marginal error in the final result.

Using Equation (2.37) the computation of the view-dependent derivative of a
projection image can thus be discretized and implemented according to Algorithm 3.
In this algorithm we used the following equality

||θ||2
〈θ, ew(λ)〉2

=
u2 + v2 + D2

D
, (2.42)

and the source-detector distance D, the unit vectors eu(λ), ev(λ), and ew(λ) are
extracted from the corresponding projection matrix P(λ) using the function ”ex-
tractGeometry”.5 All derivatives are discretized using central differences, i.e. the
derivative h′(x) of a function h(x) is numerically computed according to

h′(x) � h(x + ε)− h(x− ε)

2ε
(2.43)

with ε chosen according to the sampling interval of that function. Algorithm 3 can
be used to compute the derivative adequately in practical acquisitions that deviate
slightly from an ideal scan geometry.

5 See Appendix A how the function ”extractGeometry” can be implemented to extract the geo-
metrical parameters from a projection matrix.
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Algorithm 3: Computation of the view-dependent derivative of a projection
image.

Input: Three successive projection images Ii, 0 ≤ i < 3, having Nu ×Nv

pixels each
Input: Corresponding projection matrices Pi, 0 ≤ i < 3
Input: Pixel size du and dv
Input: Average distance dλ between two source positions on the trajectory
Result: View-dependent derivative I′ of projection image I1
// Extract geometrical parameters
[ eu0 ev0 ew0 u00 v00 D0 ] = extractGeometry(P0, du, dv);1

[ eu1 ev1 ew1 u01 v01 D1 ] = extractGeometry(P1, du, dv);2

[ eu2 ev2 ew2 u02 v02 D2 ] = extractGeometry(P2, du, dv);3

for (v̌ = 0; v̌ < Nv; v̌ = v̌ + 1) do4

for (ǔ = 0; ǔ < Nu; ǔ = ǔ + 1) do5

// Compute detector coordinates
u = (ǔ− u01)du;6

v = (v̌ − v01)dv;7

// Compute normalized direction vector
f = u2 + v2 + D2

1;8

θ = (ueu1 −D1ew1 + vev1)/sqrt(f);9

// Compute derivatives
∂g
∂λ

= (I2[ǔ, v̌]− I0[ǔ, v̌])/(2 dλ);10

e′u = (eu2 − eu0)/(2dλ);11

e′v = (ev2 − ev0)/(2dλ);12

e′w = (ew2 − ew0)/(2dλ);13
∂u
∂λ

= −f(〈θ, e′u〉 · 〈θ, ew1〉 − 〈θ, eu1〉 · 〈θ, e′w〉)/D1;14
∂v
∂λ

= −f(〈θ, e′v〉 · 〈θ, ew1〉 − 〈θ, ev1〉 · 〈θ, e′w〉)/D1;15
∂g
∂u

= (I1[ǔ + 1, v̌]− I1[ǔ− 1, v̌])/(2D1);16
∂g
∂v

= (I1[ǔ, v̌ + 1]− I1[ǔ, v̌ − 1])/(2D1);17

I′[ǔ, v̌] = ∂g
∂λ

+ ∂g
∂u

∂u
∂λ

+ ∂g
∂v

∂v
∂λ
;18

end19

end20
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detector
detector element

a(λM)∗

filtering lines

Figure 2.8: Forward rebinning: the values of the filtering line coordinates (dia-
monds) are computed by linear interpolation from the values of the original detector
grid (squares). Because the sampling in horizontal direction coincides between the
filtering lines and the detector grid, interpolation is only necessary in vertical direc-
tion.

Rebinning. The values of the filtering line coordinates according to the forward
rebinning step (F3) are computed such that interpolation needs to be done only in
v-direction. Therefore we choose the sampling points of the filtering line coordinates
to coincide with the original detector coordinates in u-direction (see Figure 2.8).

The projection of the M-point a(λM)∗ onto the detector is computed using the
corresponding projection matrix P(λ). The homogeneous representation of the pro-
jection of the M-point is thus given by the matrix vector product of the projection
matrix and the M-point. This approach easily incorporates any necessary modifica-
tions of the rebinning formula in a non-ideal acquisition.

The backward rebinning operations according to filtering step (F5) are computed
using the implementation strategy that is used during forward rebinning in reversed
order.

π-Line Weighting. In order to compute the π-line weighting mask m(λ, u, v) we
project the source positions of the respective source trajectory, where projection im-
ages are acquired, onto the detector plane. Each source position along the arc segment
is projected when the current source position is on the circle segment, otherwise each
source position along the circle segment is projected. Then, we remove all projected
points that are not within the defined detector boundaries and extrapolate the result-
ing polygonal curve to the detector boundaries. The mask values (zero or one) are
computed according to the polygonal curve representation of the projected trajectory
segment as already outlined in Section 2.3.1.1 (Filtering Step F6). If less than two
points project within the detector boundaries a value of one is assigned to each pixel
of the weighting mask.

Finally, we generate a smooth transition zone within a small neighborhood of the
polygonal curve in order to avoid artifacts along the π-lines in the final reconstruction.
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This is done by applying a one-dimensional convolution of the weighting mask with
a simple averaging filter in row direction when the source is on the circle segment
and in column direction when the source is on the line segment. We selected a filter
mask size of three pixels, which provided good results at least for our specific C-arm
geometry.

Back-Projection. Because all M-line specific operations are already computed
during the filtering steps (F1) to (F6), it is possible to use the back-projection imple-
mentation approach of the Feldkamp algorithm also for the back-projection processing
in the M-line method.

The computation of the voxel-dependent distance weighting, however, had to
be changed since the M-line method uses a different distance weight (cf. Equa-
tion (2.33)):

μMline(λ, x) =
1

| 〈(x− a(λ)), ew〉 |
. (2.44)

From Equation (2.17) follows that the distance weight of the M-line method can be
computed by −s/t rather than by 1/t2:

μMline(λ, x) = −s
√
R2√〈(x− a(λ)), ew〉2

= −s
√

μFDK(λ, x) = −s1
t

(2.45)

with s = − 1
R
, where R is the distance between the source and the rotation axis. The

minus sign results from the direction of ew, which points from the origin of the DCS
towards the source position.

In non-ideal acquisitions R depends on λ and thus the factor s = s(λ) must be
calculated from

s(λ) =
1

‖ a(λ) ‖2 (2.46)

for each source position. The vector a(λ) can be extracted from the projection ma-
trix (see Appendix A). The scaling by the factor s can be efficiently computed during
filtering step (F4) by scaling the values of the filter kernel accordingly.

2.3.2 Iterative Reconstruction

The 3-D image reconstruction task can also be solved using an entirely different
approach. The problem can be formulated as a large-scale system of linear equa-
tions where the linear attenuation coefficients are the unknowns and each measured
line integral adds an additional equation to the system. Due to the large size of
the considered linear systems iterative methods such as the algebraic reconstruction
technique (ART) are usually applied in order to solve the reconstruction problem.

While this approach is conceptually simpler than analytical approaches it has a
higher computational complexity. However, iterative methods show improved image
quality when it is not feasible or simply not desired to measure a sufficiently large
number of projections. Iterative approaches further achieve better image quality
when the projections are not uniformly distributed over the scan trajectory [Kak 01,
Muel 98].
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In the following we provide the theoretical foundations of the simultaneous alge-
braic reconstruction technique (SART) and focus on implementation choices of the
most time-consuming parts of the algorithm. For a detailed overview of algebraic
reconstruction techniques we refer to [Kak 01]. A detailed comparison of iterative
reconstruction algorithms can be found in [Zhan 06]. In the following we adopt their
notation.

2.3.2.1 Simultaneous Algebraic Reconstruction Technique

The ARTmethod was proposed in [Gord 70] for the reconstruction of three-dimensional
objects from electron-microscopic scans and X-ray photography. The reconstruction
volume is subdivided into J voxels where the jth voxel is denoted by xj, 0 ≤ j < J .
We assume that in each voxel xj the function of the linear attenuation coefficient is
constant. Each projection image contains I elements. The ith ray, 0 ≤ i < I, is
defined as the line segment starting from the x-ray source position to the center of
the ith detector element of that projection. Consider the nth projection from the
total number N of measured projections, 0 ≤ n < N . Let the path length of the ith
ray of the nth projection going through the jth voxel be denoted by aij,n. Then, we
can formulate for each projection view n a system of linear equations in terms of the
measured projection data yi,n:

J−1∑
j=0

aij,nxj = yi,n , 0 ≤ i < I . (2.47)

Here, each yi,n corresponds to a measured line integral g(λ, θ(u, v)). We can rewrite
Equation (2.47) in matrix vector form as

Anx = y
n
, (2.48)

where An = (aij,n)0≤i<I,0≤j<J is the system matrix for the nth projection, x is the
vector of unknown attenuation coefficients, and y

n
is the vector of measured line inte-

grals for the nth projection. The final linear system is obtained when the individual
systems of linear equations for each projection view are stacked together:⎡

⎢⎣
A0
...

AN−1

⎤
⎥⎦ x =

⎡
⎢⎣

y
0...

y
N−1

⎤
⎥⎦ → Ax = y . (2.49)

Since the size of matrix A is very large for practical reconstruction problems itera-
tive methods are applied in order to solve the system of linear equations. Using the
Kaczmarz method [Kacz 37] the reconstruction is accomplished by iteratively updat-
ing the unknown linear attenuation coefficients x in a ”ray-by-ray” manner. In each
update step a forward-projection through the current voxel volume along the ray un-
der consideration is computed, and in the following back-projection step the voxels,
which are affected by the ray, are updated by the difference between the computed
line integral and the measured line integral. This difference contributes to each voxel
according to the proportion of the path length of the ray inside the voxel and the
complete path length of the ray through the volume.
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Using highly parallel computing hardware it is nearly impossible to efficiently
implement iterative reconstruction algorithms, which require voxel updates in a ”ray-
by-ray” manner. Fortunately there are other formulations of ART, which are better
suited for an efficient parallel implementation and at the same time have even better
noise properties [Muel 98].

The simultaneous algebraic reconstruction technique (SART) updates the voxel
volume simultaneously after all rays of a projection image have been processed. This
allows to efficiently compute the forward-projection and the back-projection along
the rays of each projection in parallel.

In the following we describe the update formula for the SART method. In each
iteration of the SART method all projections N are processed. The processing order
of the projections strongly influences the practical performance of the method. It
has been suggested that the information of two successively processed projections
should be correlated as less as possible [Guan 94]. During processing we define the
approximation of the linear attenuation coefficient for the jth voxel as x̂k,nj . The
index k denotes how many iterations have been completed so far. The index n
denotes how many projections have previously been processed in iteration k and thus
how many simultaneous voxel update steps have been done during that iteration step.
The starting value of the jth voxel in iteration k + 1 is defined as x̂k+1,0

j = x̂k,Nj .
If we denote by Mj,n the total number of rays in the nth projection going through

the jth voxel, the update formula of SART for the jth voxel can be written as [Zhan 06]:

x̂k+1,n
j = x̂k+1,n−1

j + τ

Mj,n−1∑
m=0

amj,n

⎛
⎜⎜⎜⎝

ym,n −
J−1∑
j=0

amj,nx̂
k+1,n−1
j

J−1∑
j=0

amj,n

⎞
⎟⎟⎟⎠

Mj,n−1∑
m=0

amj,n

. (2.50)

Here m denotes the index of the subset Mj,n of the I rays in the nth projection view.
τ is a relaxation parameter, which is a small positive number (less than 1). It is used
to reduce noise effects introduced by the update process.

There are several possibilities to choose the initial voxel values x̂0,0j . They are
often initialized to zero or very small positive values. Another option would be to
initialize them to the result of other reconstruction approaches; e.g., the FDK method
or simply the result of an unfiltered back-projection step. Streak artifacts appearing
around high-contrast structures disappear very slowly with the iterations when the
initial voxel volume is uniformly initialized. These artifacts are rapidly suppressed
when an initial FDK reconstruction is used as a starting point at the expense of the
injection of additional noise. This noise is, however, effectively removed after five to
ten iterations [Zbij 03].

2.3.2.2 Implementation Strategies

The SART update formula (Equation (2.50)) consists mainly of two computationally
expensive steps: forward-projection and back-projection. Both of them exhibit a
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sufficient large amount of operations, which can be computed highly efficiently on
special hardware architectures.

In order to make use of the parallelism offered by these architectures the forward-
projection step can be easily implemented in a ray-driven manner. Each sampled ray
sum 0 ≤ i < I can be computed in parallel.

Usually, the forward-projection is defined as the transposed operator of the back-
projection. This leads to a ray-driven back-projection. However, we suggest to imple-
ment the back-projection step in a voxel-driven manner. Compared to a ray-driven
back-projection implementation this approach is free of race conditions during the
voxel updates. Furthermore, this implementation approach has another significant
advantage because it avoids any computational operations, which are necessary to
calculate the weighting coefficients of matrix A during back-projection. This is true
because the size of the subset Mj,n for each voxel j is exactly one in a voxel-driven
back-projection implementation. It can be seen from Equation (2.50) that the sums
over m are removed and the remaining weighting factors amj,n in the numerator and
the denominator are canceled out.

This results in the following simplified update formula for a voxel-driven back-
projection implementation:

x̂k+1,n
j = x̂k+1,n−1

j + τ

ym,n −
J−1∑
j=0

amj,nx̂
k+1,n−1
j

lm
. (2.51)

Here, m refers to the ray in projection n going through the center of voxel j and

lm =
J−1∑
j=0

amj,n (2.52)

is the path length of this ray through the complete volume. It must be stated that
the ray m does not necessarily need to be included in the digitally sampled rays I
of the considered projection n. This results from the implementation choice of a
non-matching6 forward-projection and back-projection pair. Forward-projection is
computed ray-driven, back-projection voxel-driven. During back-projection all ac-
cesses to the differences of the projection values and the computed ray sums, which
have not been computed during forward-projection are interpolated using the com-
puted neighboring differences of the projection value and the computed ray sums of
that projection. For example bilinear interpolation can be used for that.

The influence of a non-matching forward-projection and back-projection pair in
the implementation of iterative reconstruction is investigated in [Zeng 00]. The au-
thors conclude that using a matched or unmatched forward- and back-projection
pair is not a very critical factor in a practical image reconstruction problem. An
unmatched pair can even remove ring artifacts, which are otherwise introduced in
reconstructions using a matched pair.

6 Generally the term non-matching refers to the property that the forward-projection operator
and the back-projection operator are not transposed of each other.



www.manaraa.com

34 Chapter 2. Algorithms for Cone-Beam Image Reconstruction

2.3.2.3 Other Iterative Algorithms

There are other variants of iterative reconstruction algorithms. The simultaneous
iterative reconstruction technique (SIRT) is a variation of SART. It distinguishes from
SART mainly because the voxels of the volume are only updated after all projections
have been processed. Iterative FBP approaches are similar to SART or SIRT. In each
update step, however, a ramp filter is applied to the difference images, which speeds
up the convergence.

Using statistical iterative reconstruction algorithms (e.g., MLEM [Shep 82] or
OSEM [Huds 94]) physical effects can be incorporated in order to achieve better im-
age quality for noisy data. They have been successfully applied in molecular imaging
scanners for a few years, for example.

While the theoretical formulations of iterative reconstruction algorithms may vary
significantly, the most time-consuming parts remain to be the forward-projection
through the voxel-volume and the back-projection of the difference images. For some
algorithm variants (e.g., in statistical iterative approaches) these steps have to be
applied even several times per update step.

We do not implement a complete iterative method in this thesis. Rather than that
we focus on an efficient hardware implementation of the forward- and back-projection
step. Doing it this way an estimate of the overall reconstruction time of a specific
iterative reconstruction algorithm is easily possible.

2.4 Summary

We have presented three different approaches to solve the 3-D reconstruction task
in medical imaging. The most common used reconstruction algorithm in practical
cone-beam CT scanners is the FDK method. We have outlined the challenges to
implement this algorithm for real CT systems that usually deviate slightly from the
ideal Feldkamp geometry. Commonly a calibration step is performed in order to deal
with such non-ideal acquisitions. We have derived an implementation approach that
takes these deviations into account and is still amenable to a parallel implementation
on high performance architectures. Finally, we have performed an analysis of the
time complexity of the two most computationally expensive processing steps; the
filtering of the image rows with time complexity O(N3 log2 N), which constitutes
roughly 20% of the overall computation time, and the back-projection step with time
complexity O(N4), which takes over 70% of the overall processing time in practical
cone-beam CT systems.

Since the FDK method is of an approximative nature, its reconstruction results
suffer from severe artifacts in certain situations. We have selected two alternative
approaches to cone-beam reconstruction, which are able to deliver significantly im-
proved image quality when compared to the results of the FDK method.

In this regard we have discussed the M-line method, which is a theoretically ex-
act and stable reconstruction algorithm. The M-line method takes advantage from
an extension of the source trajectory that guarantees a complete cone-beam data
acquisition. Using this approach the problem of cone artifacts of FDK reconstruc-
tions is totally resolved. Additionally, we have presented an iterative reconstruc-
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tion approach with a strong focus on its most time-consuming processing steps; the
forward-projection and the back-projection.

Finally, we have derived appropriate implementation approaches, that are able to
handle the non-ideal acquisitions in practical cone-beam CT systems, both for the
M-line method and for iterative reconstruction methods.
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Chapter 3

Design and Implementation of a
General Reconstruction Framework

The design and implementation of the reconstruction system in medical X-ray imag-
ing is a challenging issue due to its immense computational demands. In order to
ensure an efficient clinical workflow it is inevitable to meet high performance re-
quirements. Hence, the usage of hardware acceleration is mandatory. The software
architecture of the reconstruction system is required to be modular in a sense that
different accelerator hardware platforms are supported. It must be possible to imple-
ment different parts of the algorithm using different acceleration architectures and
techniques.

This chapter introduces and discusses the design of a software architecture for an
image reconstruction system that meets the aforementioned requirements. We im-
plemented a multi-threaded software framework that combines three software design
patterns: the pipeline, the master/worker [Matt 05], and the factory design pat-
tern [Gamm94]. This enables us to take advantage of the parallelism in off-the-shelf
accelerator hardware such as multi-core systems, the Cell processor, and graphics
accelerators in a very flexible and reusable way.

The main contributions of this chapter have been presented at the International
Conference on Software Engineering 2008 [Sche 08].

3.1 Motivation

Scanning devices in medical imaging acquire a huge amount of data, e.g. X-ray
projection images from different angles around the patient. Modern C-arm devices,
for instance, generate more than 2 GigaByte (GB) of projection data for volume
reconstruction. The basic computational structure of a reconstruction system consists
of a series of processing tasks on these data, which finally results in the reconstructed
volume, consisting of many transaxial slices through the patient.

The typical medical workflow – especially for interventional imaging using C-arm
devices – requires high-speed reconstruction in order to avoid a delay of patient treat-
ment during surgery, for example. Therefore, future practical reconstruction systems
may present the reconstructed volume to the physician in real-time, immediately af-
ter the last projection image has been acquired by the scanning device. This requires

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
Cone-Beam CT Reconstruction, DOI 10.1007/978-3-8348-8259-2_3, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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to do all computations on-the-fly, which means that the reconstruction must be done
in parallel to the data acquisition.

Our proposed software architecture is based upon a combination of parallel design
patterns [Matt 05]. The main part of the reconstruction system follows the pipeline
pattern [Posn 96, Verm95] in order to organize the different processing tasks on the
input data in concurrently executing stages. Achieving the objective to meet the im-
mense computational demands on the reconstruction system, hardware acceleration
of the respective processing tasks must be used in addition to the pipeline design.
According to our experience parallel hardware architectures can be used most effi-
ciently by following either the pipeline design pattern or the master/worker design
pattern [Matt 05] in order to parallelize the computations of the respective pipeline
stages.

Another advantage of our approach is its role as a hardware abstraction layer.
The master/worker concept allows to abstract from the respective hardware accel-
erator used in a specific pipeline stage. In combination with the factory1 design
pattern [Alex 01, Gamm94] most parts of the reconstruction algorithm can be ex-
pressed independently from the used acceleration hardware. The respective architec-
ture execution configuration of the pipeline stages can even be changed dynamically
at run-time.

We have done a thorough evaluation of the proposed design approach by im-
plementing several reconstruction systems using the aforementioned hardware plat-
forms (see Chapters 5 to 7). While the basic building parts as described by the
combination of the pipeline and the master/worker design patterns remain the same
for all reconstruction systems, we implemented this design paradigm using a multi-
threaded approach in a software framework called Reconstruction Toolkit (RTK).
The framework further addresses resource usage issues when allocating objects in the
pipeline, e.g. the allocation and management of buffers for input data.

In the following section we briefly describe a state-of-the-art reconstruction system
using an example of reconstruction in CT with C-arm devices. Then, we comment
on the technical facts of the considered hardware architectures used to implement
accelerated versions of such a system. In Section 3.2 we discuss in detail the design
of a reconstruction system, which faces all important building blocks of its software
architecture: the reconstruction pipeline (3.2.1), the parallelization strategy (3.2.2)
and the resource management (3.2.3). The following section reflects the practical
challenge in implementing the design in a software framework that is flexible, reusable,
and easy to extend.

3.1.1 Cone-Beam CT Reconstruction

In this section we briefly recapitulate the computational steps involved in a state-of-
the-art CT reconstruction system (e.g. a C-arm CT device) that is based upon the
FDK reconstruction method [Feld 84].

1 The factory design pattern provides an interface for creating families of related or dependent
objects without specifying their concrete classes. This interface can then be implemented differently
for a specific hardware configuration.
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Figure 3.1: Processing steps of a state-of-the-art CT reconstruction system.

The reconstruction process can be subdivided into several parts [Heig 07]: 2-D
preprocessing of the X-ray projection images, high-pass filtering in frequency domain
of the X-ray projection images, back-projection and 3-D post-processing. Each pro-
jection image is processed instantaneously when it is transferred from the acquisition
device over the network or, alternatively, when it is loaded from the hard disk. The
back-projection is the computationally most expensive step and typically accounts
for more than 70% of the overall execution time [Heig 07]. For each projection image
and for each discrete volume element (voxel), the intersection of the corresponding
X-ray beam with the detector is computed and the respective detector intensity is
accumulated to the current voxel.

Figure 3.1 illustrates the processing steps in the order of occurrence. A more
detailed discussion of algorithms used in reconstruction systems has already been
presented in Chapter 2 or can alternatively be found in [Wies 00] and [Zell 05].

3.1.2 Target Hardware Platforms

Due to the immense processing requirements of any reconstruction system, accelera-
tion with special hardware is mandatory in order to meet the requirements of today’s
medical workflow. Acceleration boards based upon FPGA technology have often been
used in commercial reconstruction systems [Heig 07].

A combination of hardware using off-the-shelf technology may also be used for this
task. Today, graphics accelerator boards, the CBEA, multi-core and multi-processor
systems seem to be the most promising candidates. A significant advantage of these
acceleration platforms over FPGA solutions is that their implementation requires
much less development effort than FPGA-based solutions.

3.1.2.1 Multi-Core and Multi-Processor Systems

Nowadays, all relevant reconstruction systems are based upon this type of hardware.
These systems are considered as the basic building block in every reconstruction sys-
tem. The control flow of any reconstruction algorithm and some parts of it are often
implemented on these processors. However, the processing power is still insufficient
to achieve the reconstruction speed that is required in interventional environments.
In addition, the computationally most expensive tasks must therefore be accelerated
using special hardware architectures.
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3.1.2.2 Cell Broadband Engine Architecture

The CBEA [Pham05] introduced by IBM, Toshiba, and Sony is a special type of
a multi-core processing system consisting of a PowerPC Processor Element (PPE)
together with eight Synergistic Processor Elements (SPEs) offering a theoretical per-
formance of 204.8 Gflops2 (3.2 GHz, 8 SPEs, 4 floating point multiply-add operations
per clock cycle) on a single chip. The processor is still completely programmable
using high level languages such as C and C++.

The major challenge of porting an algorithm to the CBEA is to exploit the paral-
lelism that it exhibits. The PPE, which is compliant with the 64-bit Power architec-
ture, is dedicated to host a Linux operating system and manages the SPEs as resources
for computationally intensive tasks. The SPEs support 128 bit vector instructions
to execute the same operations simultaneously on multiple data elements (SIMD).
In case of single precision floating point values (4 byte each) four operations can be
executed in parallel. The SPEs are highly optimized for running compute-intensive
code. They have only a small memory each (local store, 256 KB) and are connected
to each other and to the main memory via a fast bus system, the Element Inter-
connect Bus (EIB). The data transfer between SPEs and main memory is not done
automatically as is the case for conventional processor architectures, but is under
complete control of the programmer, who can thus optimize data flow without any
side effects of caching policies.

A more detailed overview of the CBEA is given in Section 4.1.

3.1.2.3 Common Unified Device Architecture

In comparison to the nine-way coherent CBEA, modern GPUs offer even more paral-
lelism by their SIMD design paradigm. The Nvidia Tesla C1060 computing processor,
for example, uses 240 Stream Processors in parallel offering a theoretical performance
of 933 Gflops2(240 stream processors, 1.296 GHz, one multiply-add operation and one
multiply operation per clock cycle per Stream Processor).

Recently, Nvidia has provided a fundamentally new, and easy-to-use computing
architecture for solving complex computational problems on the GPU. It is called
the Common Unified Device Architecture (CUDA). It allows to implement graphics-
accelerated applications using the C-programming language with a few CUDA-specific
extensions.

The programs, which are executed on the graphics device, are called kernels. A
graphics context must be initialized and bound to a thread running on the host
system. The execution of the kernels must be initiated from this thread, which must
be addressed in the design of the software architecture.

A more detailed overview of CUDA is presented in Section 6.1.

2 1 Gflops = 1 Giga floating-point operations per second = 109 floating-point operations per
second
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3.2 Reconstruction System Design

Throughout the discussion of our reconstruction system design we suppose that the
whole system is primarily based upon a general-purpose computing platform either as
a single-core or multi-core system. This system may be extended by several hardware
accelerators either on-chip or as an accelerator board. For this reason, the design
must allow the acceleration by specific hardware architectures at each part of the
algorithm. It is also required that several different hardware architectures can be
used for different processing steps.

3.2.1 Reconstruction Pipeline

As can be seen in Figure 3.1 the overall computation of the reconstruction system
involves performing calculations on a set of 2-D projection images, where the calcula-
tions can be viewed in terms of the projections flowing through a sequence of stages.
We use the pipeline design pattern [Matt 05] to map the blocks (stages) of Figure 3.1
onto entities working together in order to form a powerful software framework which
is both, reusable, as well as easy to maintain and to extend.

3.2.1.1 Pipeline Design Pattern

Software systems where ordered data passes through a series of processing tasks are
ideally mapped to a pipeline architecture [Matt 05]. This is especially true for any
CT reconstruction system where hundreds of X-ray projection images have to be
processed in several filtering steps and are then back-projected into the resulting
volume dataset. The pipeline pattern should be applied to build configurable data-
flow pipelines. In our design we use a combination of the pipeline patterns that are
described in [Posn 96, Verm95]. In the following we review the pipeline design pattern
in the context of a reconstruction system.

From the software engineering point of view, the pipeline design pattern provides
the following benefits for the reconstruction system architecture:

• It allows to decouple the compositional structure of the processing tasks in a
specific algorithm from the implementation that computes the respective tasks.

• It is possible to set up the pipeline in a type-safe and pluggable manner. Type-
safe means that the type of data that is sent through the different pipeline
stages can be defined and enforced statically by the compiler.

• The pipeline can be both configured and reconfigured dynamically and inde-
pendently from reusable components.

Depending on the used reconstruction algorithm, the order of both control and
data messages that are sent through the pipeline stages must often be preserved. This
is easy to realize using the pipeline approach, because the pipeline design pattern
depends upon the flow of data between stages.
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3.2.1.2 Concurrency

Within the pipeline design pattern, the concurrent execution of the different stages
is possible using a multi-threaded design approach. This allows us to compute the
different parts of the reconstruction algorithm in parallel. The following factors affect
the performance of reconstruction systems that are based upon this pattern:

• The slowest pipeline stage will determine the aggregate reconstruction speed.

• Communication overhead can affect the performance of the application, es-
pecially when only few computations are executed in a pipeline stage. In a
reconstruction system, the granularity of the data flow between pipeline stages
can be considered to be large, because most often projection images will flow
through the pipeline as a whole. On shared-memory architectures, the num-
ber of computations that are performed on the projection images is high in
comparison to the communication overhead.

• The amount of concurrency in the pipeline is limited by the number of pipeline
stages and a larger number of pipeline stages is preferable. In a reconstruction
system this number depends upon the reconstruction algorithm and is therefore
limited considering a pipeline flow with a granularity of projection images.

• The time required to fill and drain the pipeline should be small compared to
the overall run-time. Since reconstruction systems process a large amount of
projections, this point can be ignored in this context.

Nonetheless, for a reconstruction system, the amount of concurrency offered by the
pipeline pattern is by far insufficient. We therefore consider the pipeline architecture
only as the basic building block of the overall reconstruction system architecture that
structures and simplifies its implementation and enables basic concurrent processing.
As will be described in Section 3.2.2, the actual strength of the pipeline design comes
into play when we combine this pattern with the master/worker pattern for selected
pipeline stages in order to make use of special accelerator hardware.

3.2.2 Parallelization Strategy

As was outlined in the previous section, the pipeline design pattern is able to act as
the basic building block of a reconstruction system. In order to achieve the recon-
struction speed necessary for the typical medical workflow, the level of concurrency
in the pipeline design is still not sufficient and flexible enough. Therefore, the soft-
ware architecture of a reconstruction system has to be extended by including other
possibilities of achieving concurrency.

In this section we show how the gap can ideally be filled when combining the
master/worker [Matt 05] design pattern with the pipeline design pattern.

3.2.2.1 Master/Worker Design Pattern

The master/worker design pattern is particularly useful for embarrassingly parallel
problems that can be faced by a task parallelization approach [Matt 05]. The most
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computationally expensive task in a reconstruction system, the back-projection, is
of such type. The master/worker approach is also applicable to a variety of parallel
algorithm structures and it is possible to use it as a paradigm for hardware accelerated
algorithm design on many different architectures. In the following we review the
master/worker design pattern in the context of a reconstruction system.

The master divides the problem into tasks – in the following denoted as work
instruction blocks (WIBs) – and sends them to its workers for processing. For ex-
ample, the back-projection computation can be partitioned into several WIBs, each
corresponding to a small sub-volume. Then, each worker processes in a loop one
WIB after the other and sends the respective results back to the master. When the
master received all WIBs corresponding to a specific task, the processing of that task
is finished.

A parallelization strategy based upon the master/worker pattern has the following
characteristics:

• Static and dynamic load balancing strategies can be applied for the distribution
of the tasks to the workers. Both strategies are easy to realize. In Section 3.2.2.3
we will see that this is particularly important for hardware abstraction in our
design.

• Master/worker algorithms have good scalability as long as the number of WIBs
significantly exceeds the number of workers.

• The processing time of a task must be significantly higher than the necessary
communication overhead to distribute it to a worker and back to the master.

The last two characteristics can easily be enforced in the considered medical imag-
ing applications. For performance reasons all worker processes should be created when
the pipeline is initialized. This saves the overhead resulting from frequent creation
and termination of worker processes.

3.2.2.2 Combination with the Pipeline Design Pattern

From a macroscopic point of view, our software architecture consists of a pipeline
structure. In order to overcome the limited flexibility and concurrency in the pipeline
design pattern (see Section 3.2.1.2), further refinement of the pipeline stages is nec-
essary. We propose a software design of the reconstruction system that allows a
hierarchical composition of the pipeline and the master/worker design patterns. This
allows to integrate a master and a configurable number of workers in a pipeline stage.
In the context of our reconstruction task we have found that in the majority of cases
it is sufficient to have only a hierarchy depth of one, which means that it must only
be possible to integrate master/worker processing in a pipeline stage. Especially in
multi GPU scenarios it is, however, a useful extension if pipelines can be nested in a
specific worker. This procedure totally closes the gap of limited support for flexibility
and concurrency in the pipeline pattern.

A centralized approach with only one master process can easily become a bot-
tleneck when the master is not fast enough to keep all of its workers busy. It also
prohibits an optimal usage of the acceleration hardware because its processing power
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still has to be assigned or partitioned statically to specific pipeline stages. For this
reason, we extend our design such that it allows to share processing elements between
several master/worker pipeline stages (see Section 3.2.3.1).

3.2.2.3 Hardware Abstraction

The combined pipeline and master/worker design paradigm can be used to parallelize
most parts of a specific reconstruction algorithm and it is not tied to any particular
hardware. The approach can be used for everything from clusters to shared-memory
architectures. It can thus act as a hardware abstraction layer in the reconstruction
system.

The basic functionality and communication mechanisms of the master/worker pat-
tern have to be implemented only once for each supported hardware architecture, and
different load balancing strategies can be integrated in its communication abstrac-
tion. This is necessary because for a specific hardware architecture, a certain load
balancing strategy may be better than another one. For example, using a multi GPU
platform and CUDA, the sharing of resources in device memory among a task-group
can require static load balancing. In contrast to this, the CBEA always performs
best with a dynamic load balancing approach, since no resources are shared in local
store among task-groups.

In reconstruction systems, several hardware components may be used for the ac-
celeration of different parts of the reconstruction algorithm. The combination of the
pipeline and master/worker pattern has enough flexibility to support such hetero-
geneous systems allowing the usage of different acceleration hardware solutions in
each pipeline stage. A specific part of the reconstruction algorithm may be mapped
to the best suited acceleration hardware independently of the processing order. For
example, multi-core systems may be used in between GPU-accelerated parts of the
algorithm.

In combination with the factory design pattern [Alex 01, Gamm94], most parts of
the overall reconstruction algorithm can be expressed independently from the used
acceleration hardware. This allows for a portable and flexible algorithm design that
reuses the common parts and even enables the respective architecture execution con-
figuration of the pipeline stages to be changed dynamically at run-time.

3.2.3 Resource Management

Another important aspect in the design of a reconstruction system is the resource
management. We distinguish the relevant resources of the considered target hardware
platforms into two classes: processing elements and data buffers. In the following
we show how a sophisticated resource management can easily be integrated in the
reconstruction system design for both processing elements and data buffers.

3.2.3.1 Processing Elements

As was outlined in Section 3.2.2.2, processing elements have to be statically assigned
to special master/worker pipeline stages, which prohibits an optimal usage of the
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acceleration hardware. For this reason we want to share processing elements between
several master/worker pipeline stages.

This is achieved by extending the single master methodology to support multiple
masters, each of them living in a different pipeline stage, but still using the same
group of workers. In this respect, the design is enhanced by an improved scalability
and also by a reduction of the limitation that the slowest pipeline stage determines
the aggregate reconstruction speed. Load is now automatically balanced between
pipeline stages with master/worker processing capability that are using the same
group of workers. Only this extension enables an optimal usage of the considered
hardware architectures:

• In multi-processor and multi-core systems, thread switching overhead can be
reduced by controlling the overall number of used threads.

• With regard to the CBEA, resource usage of the processing elements is espe-
cially improved by sharing the SPEs between pipeline stages. It is therefore
necessary to technically compile each worker side of the shared pipeline stages
into one associated SPE program. This may result in too large SPE program
binaries which do not fit into the local store any more.

• In CUDA development, the considered design allows to share a single graphics
context and thus GPU device resources among different pipeline stages, which
avoids expensive data transfers between device and host memory.

3.2.3.2 Data Buffers

In a reconstruction system, resource management must also be addressed for data
buffers, because the allocation of memory for all buffers is not always feasible. For
example, the reconstruction of a typical medical dataset in C-arm CT requires up
to three GB to store the reconstruction volume together with all projections. It is
therefore necessary to allocate only a limited number of data buffers. That means
that only a few projection images and the reconstruction volume may be used during
reconstruction. In order to avoid the frequent allocation and deallocation of memory,
which is an expensive operation, we reuse projection and volume buffers after they
have been processed. This can be achieved by using the object pool pattern [Gran 98].

By introducing this design paradigm, data buffers can be acquired from the pool
and released to the pool in any pipeline stage. For example, the projection buffers
can be acquired in the first stage of the pipeline and released in the back-projection
stage after processing. In order to support the multi-threaded software framework,
the object pool can be based upon a shared queue object [Matt 05]. The pool will
block any pop requests when no more data buffers are available and unblocks the
respective request immediately as soon as a data buffer has been released to the pool.

3.3 Implementation

We implemented the discussed design approach in our RTK software framework.
In the following we present the basic building blocks of our implementation. We
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abstract from all details that are not relevant to understand the basic structure of
our implementation.

3.3.1 Structure

The UML class diagram in Figure 3.2 illustrates the inheritance hierarchy of our
design approach.

3.3.2 Participants

All entities live in the rtk namespace which we do not qualify in the following for
enhanced readability.

• InputSide defines the input interface of a pipeline stage for data items and
control information.

• OutputSide defines the output interface of a pipeline stage for data items and
control information.

• Stage combines an InputSide with an OutputSide to create an interior pipeline
stage.

• SourceStage is the first pipeline stage in a pipeline. The source stage creates
its input data items for its own in a separate thread of control and provides a
mechanism for the application to start the execution of the pipeline.

• SinkStage is the last pipeline stage in a pipeline. It provides a mechanism for
the application to wait for a result and to get it from the pipeline.

• Port manages the connection of two stages and provides the mechanism for
output. The port concept enables the dynamic composition of two pipeline
stages with active and passive read or write semantics [Verm95] at run-time
and without a complex class hierarchy.

• NestedPort manages the connection of two stages with active write and pas-
sive read semantics [Verm95] in that order. The stages connected by this mech-
anism are sharing the same thread of execution.

• ThreadedPort manages the connection of two stages with active write and
active read semantics [Verm95] in that order. The stages connected by this
mechanism will run in different threads of execution.

• MasterStage is the pipeline stage that is responsible for partitioning the pro-
cessing into WIBs (scattering) and to respond to processed WIBs (gathering).
The communication with its corresponding WorkerStage is done by a concrete
Master. The MasterStage must therefore register at a concrete Master in or-
der to use its communication abstraction and the processing elements that are
managed by the corresponding Master.
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Figure 3.2: UML class diagram of the inheritance hierarchy of our design approach.
The classes used to implement the pipeline pattern are shown in light gray. The
combination with the master/worker pattern is illustrated by the added classes in
dark gray.
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• WorkerStage does the processing of a WIB for a corresponding MasterStage.
All communication with the corresponding MasterStage is taken over by the cor-
responding concrete Master that controls this stage and the respective Worker.

• Master provides the basic functionality for the application of the master/-
worker pattern. While it functions as the hardware abstraction layer a concrete
Master must be implemented for each supported architecture. The Master also
creates the corresponding concrete Workers for the respective architecture. The
Master allows one or more MasterStages to connect to it and also initiates the
creation of the corresponding WorkerStages.

• Worker implements the processing node of the corresponding Master. A con-
crete Worker must be implemented for each supported architecture. The actual
processing of a WIB is switched to the corresponding WorkerStage which shall
do the processing.

3.3.3 Sample Code and Usage

The following code samples illustrate how the CT reconstruction system from Sec-
tion 3.1.1 could be implemented in C++. We concentrate on the implementation of
this application using the RTK framework rather than going into the implementation
details of the framework itself. As an example we assume that we want to accelerate
the filtering step of the application using a general purpose multi-core platform and
the preprocessing and back-projection shall be accelerated using two CUDA-enabled
graphics cards. We intentionally skipped the postprocessing step in order to shorten
the sample implementations.

The creation of the concrete stages that build up the pipeline is done by the factory
class PcCudaFactory that implements the abstract factory providing the interface to
the used methods. We refer to [Gamm94] and [Alex 01] for more details about the
factory and abstract factory pattern.

// Param i s the type t ha t c on f i g u r e s the s t a g e s
// Proj i s the type f o r X−ray p r o j e c t i on images
// Vol i s the type o f the r e con s t ru c t i on volume

// type o f the f i l t e r p i p e l i n e s t a g e s
typedef Stage<Proj , Param , Proj , Param> FltStage ;

// type o f the back−p r o j e c t i on p i p e l i n e s t a g e
typedef Stage<Proj , Param , Vol , Param> BpStage ;

class PcCudaFactory : public Factory {
public :

// De fau l t Constructor
in l ine PcCudaFactory ( ) :

// use e i g h t p roce s s ing th reads
// on the mult i−core a r c h i t e c t u r e
masterPc_ (8 ) ,
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// use two GPUs with CUDA
masterCuda_ (2) {}

// Creates the p r ep roce s s ing s t a g e wi th
// hardware a c c e l e r a t i o n us ing CUDA
in l ine FltStage ∗ CreatePrepStage ( ) {

return new PrepMasterCuda (masterCuda_ ) ;
}
// Creates the f i l t e r i n g s t a g e wi th
// a c c e l e r a t i o n us ing mult i−core systems
in l ine FltStage ∗ CreateFl tStage ( ) {

return new FltMasterPc (masterPc_ ) ;
}
// Creates the back−p r o j e c t i on s t a g e wi th
// hardware a c c e l e r a t i o n us ing CUDA
in l ine BpStage∗ CreateBpStage ( ) {

return new BpMasterCuda (masterCuda_ ) ;
}

private :
MasterPc masterPc_ ;
MasterCuda masterCuda_ ;

} ;

The preprocessing and back-projection pipeline stage share the same master,
which also enables to share the two CUDA-enabled GPUs for their processing. The
classes PrepMasterCuda, FilterMasterPc and BpMasterCuda implement the respec-
tive algorithms in an accelerated version using the mentioned hardware platforms.
For the sake of this example we give a sketch of the back-projection implementation
using the two CUDA-enabled GPUs. We have to implement two classes - the master
pipeline stage BpMasterCuda and the corresponding worker stage BpWorkerCuda:

// I i b i s the type o f a i n i t i n s t r u c t i o n b l o c k
// Wib i s the type o f a work i n s t r u c t i o n b l o c k

class BpWorkerCuda :
public WorkerStage<Proj , I ib ,Wib> {

private :
virtual void I n i t ( const I i b& i i b ) {

bp_init_cuda ( i i b ) ;
}
virtual void InputWib ( const I i b& i ib ,

Wib& wib ) {
bp_process_cuda ( i i b , wib ) ;

}
} ;

class BpMasterCuda : public MasterStage<Proj ,
Param , Vol , Param , I ib ,Wib , BpWorkerCuda> {

private :
virtual void Conf igure (
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const Param& con f i g ) {
currentVolume_ = CreateVolume ( c on f i g ) ;

}
virtual void Fin i sh ( ) {

Output (∗ currentVolume_ ) ;
currentVolume_ = 0 ;

}
virtual void ScatterWibs ( Proj& pro j ) {

// proces s a l l sub−volumes
for ( int i =0; i <2; ++i ) {

// Get a new wib
Wib& wib = AcquireWib ( pro j ) ;
// I n i t i a l i z e wib f o r sub−volume
InitWib (wib , i ) ;
// Send wib to worker
OutputWib( wib ) ;

}
}
virtual void GatherWibs ( Proj& proj ,

Wib& wib ) {
// handle processed wib
i f ( I sProce s s ed ( pro j ) )

Re leaseInput ( pro j ) ;
}
// Pointer to the r e con s t ru c t i on volume
Vol∗ currentVolume_ ;

} ;

Within the main function of the application we need to construct a source stage,
which loads the projection images and a sink stage that stores the volume. For each
processing step of the reconstruction pipeline we further construct the MasterStage
using the factory.
// cons t ruc t f ac to ry , source and s ink
PcCudaFactory f a c t o r y ;
SourceStage<Proj , Param> source ;
SinkStage<Vol , Param> s ink ;

// cons t ruc t the master s t a g e s
// f o r p r ep roce s s ing
FltStage ∗ prep = fa c t o r y . CreatePrepStage ( ) ;
// f o r f i l t e r i n g
FltStage ∗ f l t = f a c t o r y . CreateFl tStage ( ) ;
// and f o r back−p r o j e c t i on
BpStage∗ bp = fa c t o ry . CreateBpStage ( ) ;

Now it is just a matter of building up the pipeline.
// type o f the used por t c l a s s
// t ha t has a separa t e thread o f execu t i on
typedef ThreadedPort<Proj , Param> Threaded ;
// t ha t shares the thread o f execu t ion
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typedef NestedPort<Vol , Param> Nested ;

// connect p i p e l i n e s t a g e s
Pipe l i n e : : Connect(&source , prep , new Threaded ( ) ) ;
P ip e l i n e : : Connect ( prep , f l t , new Threaded ( ) ) ;
P ip e l i n e : : Connect ( f l t , bp , new Threaded ( ) ) ;
P ip e l i n e : : Connect (bp , &sink , new Nested ( ) ) ;

// s t a r t p i p e l i n e and wai t f o r the r e s u l t
source . Star t ( ) ;
s ink . Wait ( ) ;

With a different implementation of the Factory class the pipeline can be easily
configured to use different hardware acceleration platforms for each processing steps
without changing most parts of the implementation.

3.4 Summary
We have presented both the design and implementation of a software architecture
that is well suited to implement and accelerate the computationally intensive task
of 3-D reconstruction in medical imaging. Software engineering techniques play an
important role in the overall design and can improve the efficiency, flexibility and
portability of the whole reconstruction system.

In this regard, we have shown that the underlying software architecture can be
mapped to a design approach that combines the pipeline design pattern with the
master/worker design pattern. We have illustrated how the design can act as a
hardware abstraction layer to different acceleration architectures. Finally, we have
demonstrated that it even enables the combination of several acceleration hardware
platforms for different parts of the algorithm in a heterogeneous system.
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Cell Broadband Engine Architecture

Long before other microprocessor chip vendors developed wide spread multi-core pro-
cessors Sony Computer Entertainment, Toshiba, and IBM formed an allegiance (com-
monly known as STI-allegiance) to build a highly multi-core processor that can over-
come the problems of traditional microprocessor technology. The outcome was the
Cell Broadband Engine Architecture [Cell 06, Pham05] which mainly targets three
different market shares. The first major commercial application of the Cell processor
was Sony’s activity to penetrate the gaming market with the Cell-based PlayStation 3
video game console. Further application domains of the Cell processor are in the mul-
timedia industry and in the high performance computing community. For example,
IBM’s latest supercomputer, the IBM Roadrunner, is a hybrid system consisting of
General Purpose CISC Opteron processors as well as PowerXCell 8i Cell processors.
In June 2008 this supercomputer ranked first in the TOP500 list1, which maintains
the list of the world’s most powerful supercomputers, reaching record-breaking one
Petaflop – a quadrillion floating-point operations per second – of compute power using
the standard Linpack benchmark.

The Cell processor could be an ideal candidate to accelerate cone-beam CT image
reconstruction, which is one of the most compute intensive applications in the med-
ical industry. The programming methodology of the CBEA, however, pose a major
challenge to software developers who wish to make the most of this horsepower, de-
manding careful hand-tuning of programs to extract maximal performance from this
processor.

In the following we evaluate the applicability and suitability of the Cell processor
in the context of cone-beam CT reconstruction. In the next section we cover the
architecture of the CBEA. Then we develop a highly optimized CBEA-based imple-
mentation of the FDK method (Section 4.2) and present the achieved results (Sec-
tion 4.3). The main contributions of this chapter have been presented at the SPIE
Medical Imaging Conference 2007 [Sche 07c].

4.1 Architecture
The CBEA is a general-purpose multi-core processor consisting of a Power Processor
Element (PPE) together with eight Synergistic Processor Elements (SPEs) offering a

1http://www.top500.org

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
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Figure 4.1: Architecture of the Cell processor.

theoretical performance of 204.8 Gflops (3.2 GHz, 8 SPEs, 4 floating-point multiply
and add per clock cycle) on a single chip. Figure 4.1 gives an overview of the architec-
ture of the Cell processor. The processor is still completely programmable using high
level languages such as C and C++. The major challenge of porting an algorithm to
the CBEA is to exploit the parallelism that it exhibits. The PPE, which is compliant
with the 64-bit Power architecture, is dedicated to host a Linux operating system
and manages the SPEs as resources for computationally intensive tasks. The SPEs
support 128 bit vector instructions to execute the same operations simultaneously on
multiple data elements (SIMD: Single Instruction Multiple Data) [Oh 06]. In case of
single precision floating-point values (4 bytes each) four operations can be executed at
the same time. The SPEs are highly optimized for running compute-intensive code.
They have only a small memory each (Local Store, 256 KB) and are connected to
each other and to the main memory via a fast bus system, the Element Interconnect
Bus (EIB). The data transfer between SPEs and main memory is not done automat-
ically as is the case for conventional processor architectures, but is under complete
control of the programmer, who can thus optimize data flow without any side effects
of cache replacement strategies.

In the following sections we give a detailed overview of the main components of
the CBEA.

4.1.1 The Power Processor Element

The PPE is a two-way multithreaded core which is compliant with the 64-bit Power
Architecture. It works with conventional operating systems, but currently only the
Linux operating system is supported. The Power Processor Unit (PPU) within the
PPE is a dual-issue, in-order processor. Up to two instructions can be issued at
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the same time as long as they do not utilize the same execution unit. In order to
optimize the use of instruction issue slots, two instructions from two different threads
are interleaved. The processor appears to the operating system as two independent
processors although the computational resources are shared between them.

The PPE contains a 32 KB instruction cache and a cache hierarchy consisting of a
32 KB first-level cache and a 512 KB second-level cache for accesses to main memory.
The size of a cache line is 128 bytes. The PPU further supports the Vector/SIMD
Multimedia Extension of the PowerPC architecture via its AltiVec unit which is fully
pipelined for single precision floating-point. Double-precision floating-point vectors
are not supported. While each PPU can complete two floating-point operations
per clock cycle using a scalar-fused multiply-add instruction, the theoretical peak
performance of the PPE is capable of 6.4 Gflops in double-precision at 3.2 GHz. In
single precision the peak performance translates even to 25.6 Gflops using a vector-
fused multiply-add instruction of eight floating-point operations each.

Most of the time, however, the PPE acts only as the controller for up to eight
SPEs, which are used to handle most of the computational workload.

4.1.2 The Synergistic Processor Elements

The SPEs are optimized for compute intensive code. Each SPE is composed of a
Synergistic Processor Unit (SPU), and a Memory Flow Controller (MFC). The SPU
is a RISC2 processor with 128-bit SIMD organization for single and double precision
instructions. Its instruction-set architecture was designed to provide immense perfor-
mance capability for compute-intensive applications. It contains a large register file
having 128 entries and it can either operate on sixteen 8-bit integers, eight 16-bit in-
tegers, four 32-bit integers, or four single precision floating-point numbers in a single
clock cycle, as well as a memory operation. Thus, two instructions can be issued per
cycle, one on the even pipeline which performs fixed and floating-point arithmetics
and one on the odd pipeline which executes load, store and byte permutation oper-
ations. Both instruction scheduling and branch prediction is done in a static way,
which means that the ordering and the addresses of instructions decide whether they
are executed as single- or dual-issue. At 3.2 GHz, each SPE thus gives a theoretical
25.6 Gflops of single precision floating-point performance.

In Figure 4.1 it can be seen that the SPU cannot directly access the system’s main
memory. Instead the Local Store (LS) has to be used. It contains a 256 KB embedded
SRAM for both the program code and the data used during processing. The Local
Store is very different from a conventional CPU cache since it is neither transparent
to software nor does it contain hardware structures that predict which data to load.
This requires to explicitly use the MFC to initiate DMA (Direct Memory Access)
commands and to transfer data between local memory and system main memory.
Multiple memory transfers may be active at the same time while the SPU processes
data from the Local Store. In this way memory latencies can be effectively hidden
and the full memory access bandwidth can be utilized.

Compared to a modern personal computer, the SPEs provide relatively high over-
all floating-point performance for an application. However, the software programming

2 Reduced instruction set computer (RISC)
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approach of the CBEA makes it very difficult to implement and to optimize software
because of the limited size of the Local Store, the necessity to implement data trans-
fers to and from the Local Store manually, and the usage of vector instructions. This
poses a major challenge to software developers who wish to efficiently use the offered
compute capability, demanding careful hand-tuning of programs in order to extract
maximal performance from this processor. Rudimentary compiler support at least
for automatic vectorization has been available but delivered unsatisfying results.

On the other hand, due to the flexible nature of the Cell, there are several pro-
gramming approaches possible in order to utilize its resources, not limited to just
different computing paradigms.

4.1.3 The Element Interconnect Bus

The EIB is a data transfer bus internal to the Cell processor. It connects the PPE and
the SPEs with the memory controller, and the bus interface controller. It presently
consists of four circular rings connecting all devices in the same order. Data transfer
on these rings is unidirectional, two of the rings transfer clockwise and the other one
goes counterclockwise. The EIB can sustain a data rate of over 200 GB/s where each
port has a bandwidth of 25.6 GB/s. The bandwidth for accessing main memory is
also 25.6 GB/s.

It is required to adapt the parallel implementation of an algorithm to the phys-
ical structure of the EIB. Bottlenecks can arise if multiple devices access a single
port, e.g. the MIC, and overlaps of data transfers of the rings can limit the overall
bandwidth. The latencies for data transfers can, however, be effectively hidden for
compute intensive tasks. For workloads caused by such applications the performance
of the EIB is sufficient even if its physical structure is not considered.

4.2 Feldkamp Algorithm
We mapped the processing chain of the FDK method to the pipeline architecture
of the RTK framework by executing the filtering and back-projection on dedicated
stages, respectively, using a different thread of control for each stage. In order to
utilize the processing elements of the Cell processor, we used the Master/Worker
approach of the framework to dispatch the associated parallel processing of a stage
to a configurable number of workers (SPEs or PPEs). In our implementation the PPE
acts as the master which divides the processing of the considered stage into smaller
tasks and assigns them to the available processing units (SPEs). This concept is
flexible with respect to the number of SPEs that are available for the processing
while others might be busy with other tasks like filtering or preprocessing data.

To minimize the control overhead we assign rather large tasks to the processing
elements that further have to be divided into smaller tasks by the processing ele-
ments themselves. We take special care to hide any communication latencies via
double buffering techniques during the dispatching and computation process. The
only downside of our approach is that the mapping of the SPEs onto the stages is cur-
rently done statically. This means that we have to decide which SPEs shall be used
for the filtering or back-projection stage before program execution. Our approach
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can be extended to reduce the number of utilized SPEs for each stage dynamically,
if higher priority tasks are waiting to be dispatched in other pipeline stages.

An efficient implementation on the CBEA further requires to choose a proper
parallelization strategy for each algorithm that can deal with the limited Local Store
size.

4.2.1 Filtering

During the filtering we assign several projection rows to an SPE at the same time.
The SPE can process simultaneously two rows by loading them into its Local Store,
and performing the Fourier-based convolution after adding the required zero-padding.
Fortunately, the Cell SDK provided a sufficiently efficient FFT implementation for the
SPEs as open source, which is used in our implementation. Finally, communication
latencies are effectively hidden via double buffering techniques.

4.2.2 Back-Projection

Although the RTK framework already removes much of the complexity of using the
Cell SDK, a lot of code transformations are necessary in order to adapt the back-
projection code to the Cell architecture. Despite of the code optimizations of the
innermost back-projection loop, a parallelization strategy must be developed which
is able to handle the limited size of the Local Store in the SPEs. In this regard
a parallel implementation of the back-projection algorithm requires to divide the
problem into smaller and independent tasks that can be assigned to the available
processing units.

4.2.2.1 Problem Partitioning

Two critical resources have to be considered when creating tasks for an SPE: the small
amount of local memory and the limited communication bandwidth between main
memory and the SPEs. One basic back-projection task takes a small sub-volume
and the associated projection data as input. The updated sub-volume data is written
back to main memory after computation. It must further be guaranteed that different
SPEs do not work on the same sub-volumes.

Sub-Volume Shape. The projection data which a sub-volume depends on is given
by the convex hull of the sub-volume corner points projected onto the image plane
(see Figure 4.2). This region will be referred to as the projection shadow of the
sub-volume. In order to simplify the handling of the projection shadows we use a
rectangular bounding box around its convex hull, which is parallel to the coordinate
axes of the detector.

While the memory requirements for sub-volume data are determined by its di-
mensions only, the size of the projection shadow depends on a variety of parameters
of the acquisition geometry, the discretization (voxel and pixel size), and the shape
of the sub-volume, together with the position of the sub-volume within the volume of
interest (VOI). In principle the following analysis of the sub-volume shape must be
done for each dataset separately. The acquisition geometry, however, can be expected
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to be constant for a certain device even though different calibration results and scan
protocols might lead to slight variations.

In the following we investigate an optimal sub-volume shape for a typical dataset
of a state-of-the-art C-arm device (see Appendix B.2). The dataset is reconstructed
using a volume which contains the whole VOI and which consists of 5123 voxels.
The voxel size is 0.46 mm in each dimension. Using larger voxel sizes will result
in significantly bigger projection shadows. It is then required either to use smaller
sub-volumes or to downsample the projection images.

The sub-volume shape was optimized by simulating the maximum projection
shadow size and the overall amount of projection data that has to be transferred
for the mentioned acquisition geometry and discretization. Table 4.1 summarizes
the achieved results. The required Local Store memory is simply the sum of the
sub-volume size and the maximal shadow. However, if double buffering (see Sec-
tion 4.2.2.2) and bilinear interpolation (see Section 4.2.2.3) are used, the memory
requirements increase by a factor of two for the sub-volume and even by a factor of
four for the projection shadow.

While these optimization techniques are essential in order to achieve good per-
formance we analyze the memory requirements such that the optimizations can be
enabled. It can be seen that a suitable sub-volume shape is large in x- and y-direction,
but small in z-direction. This can be intuitively explained by the fact that the main
direction of projection rays is roughly parallel to the x-y-plane and therefore each
pixel of the projection shadow is required more often in the computation for that
sub-volume.

We decided for a sub-volume size of 32× 32× 8 voxels, which is a good trade-off
between memory requirements and overall amount of data transfer. This configura-
tion has the further advantage that the memory size in x-direction of the sub-volume
is a multiple of 128 bytes which results in an optimal memory transfer bandwidth
between main memory and SPEs even if the complete volume is stored in row major
memory format.

Task Assignment. Due to the limited Local Store size it is not possible to load
the required projection shadows for all projections into the Local Store at the same
time. Therefore, the required projection shadows have to be streamed to the SPEs
while the data for one sub-volume is kept in Local Store memory.

The total number of sub-volumes NS, which have to be processed for the dataset
under consideration using the considered sub-volume dimensions, can be calculated
by

NS =
512× 512× 512

32× 32× 8
= 16384. (4.1)

A very easy and efficient parallelization strategy could process the back-projection
for one sub-volume and for all projection images of the dataset in one task. This
would only require the creation of 16384 tasks (Equation 4.1) in order to reconstruct
the complete dataset. Such a workload can be easily handled in a Master/Worker
approach by the PPE as the master. This approach, however, has two obvious draw-
backs. First, an enormous amount of main memory would be required in order to
keep all projection images in main memory. For example, the reconstruction of the
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Sub-Volume Sub-Volume Maximal Required Projection
Dimensions Size Shadow LS-Memory Data Transfer

[px] [KB] [KB] [KB] [GB]

16 x 16 x 4 4 7 36 226
16 x 16 x 8 8 10 56 185
16 x 16 x 12 12 13 76 172
16 x 16 x 16 16 17 100 164

24 x 24 x 4 9 12 66 146
24 x 24 x 8 18 16 100 115
24 x 24 x 12 27 20 134 105
24 x 24 x 16 36 25 172 100
24 x 24 x 20 45 29 206 97
24 x 24 x 24 54 34 244 95

32 x 32 x 4 16 17 100 106
32 x 32 x 8 32 23 156 81
32 x 32 x 12 48 28 208 73
32 x 32 x 16 64 34 264 68
32 x 32 x 20 80 39 316 66
32 x 32 x 24 96 45 372 65
32 x 32 x 28 112 51 428 63
32 x 32 x 32 128 56 480 62

48 x 48 x 4 36 27 180 77
48 x 48 x 8 72 33 276 56
48 x 48 x 12 108 39 372 49
48 x 48 x 16 144 46 472 45

64 x 64 x 16 256 72 800 33
64 x 64 x 24 384 89 1124 30
64 x 64 x 32 512 107 1452 28

Table 4.1: Memory requirements and amount of projection data transfer for different
sub-volume sizes. Better configurations are written in bold letters.
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considered dataset consisting of 543 projection images would require at least 2.4 GB
of main memory only to save the projection images. Second, the back-projection
processing can only start when all projection images are available and are loaded into
main memory. An on-the-fly reconstruction would not be possible.

In order to enable an on-the-fly reconstruction with minimal main memory re-
quirements a back-projection task may be reduced to the back-projection of a single
projection image into only one sub-volume. Now both the sub-volumes and the cor-
responding projection shadows have to be streamed to the SPEs. This approach
solves both problems mentioned above. However, using the Master/Worker approach
to distribute the processing to the workers (SPEs), a lot more back-projection tasks
have to be managed by the master (PPE):

NS =
512× 512× 512

32× 32× 8
× 543 = 8896512. (4.2)

This may result in a back-projection performance that is limited by communication
and synchronization issues. There are two possibilities to significantly reduce the
computational effort for creating tasks on the PPE and the amount of communication
required to transfer task information to the SPEs:

1. Multiple projection images can be combined to projection sequences. Very large
projection sequence sizes, however, shall be avoided because more main memory
has to be used to load a projection sequence and the on-the-fly reconstruction
ability is reduced. Back-projection processing may not start until at least one
complete projection sequence is loaded to main memory and the execution
time of the back-projection processing increases by the time that is needed
to process the last projection sequence. A projection sequence size of eight
to 16 projections is a good compromise for the considered configuration. The
number of projection buffers in main memory shall be at least twice as big
as the size of the projection sequence in order to allow the processing of the
following projection images in the previous stages while the current images are
back-projected.

2. Another possibility to reduce the number of back-projection tasks is to com-
bine several sub-volumes to a volume partition (see Figure 4.2). Then each
worker (SPE) is responsible to further divide the volume partition into sub-
volumes, which allows the worker to process all sub-volumes of that partition
without further synchronization with its master.

The implementation of the algorithm uses the Master/Worker facilities of the
RTK. In this regard the back-projection is implemented in a MasterStage on the
PPE and in the corresponding WorkerStages on the SPEs. The master queues in-
coming projection images. As soon as a complete projection sequence is available
it creates several back-projection tasks consisting of information about the volume
partition and about the projection sequence. Each task is sent to an SPE in a work
instruction block (WIB). Its contents are shown in Table 4.2. The RTK framework
completely hides the CBEA specific implementation, which uses the hardware mail-
box mechanism and DMA transfers to send and receive WIBs on the PPE and the



www.manaraa.com

4.2. Feldkamp Algorithm 61

projection
shadow

detector

sub-volume

partition

X-ray
focus

x

y

z

ǔ
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Figure 4.2: Perspective geometry of the cone-beam CT device (the v̌-axis and ž-axis
are not necessarily parallel) together with the parallelization strategy of our back-
projection implementation using multi-core processors such as the CBEA (partitions
are sent as tasks to the processing cores, and are then further subdivided into sub-
volumes).

SPE. After the back-projection is finished, the reconstructed volume is handed over
to the next Stage of the corresponding Pipeline. Algorithm 4 gives an overview of the
subdivision scheme which is used to process the back-projection for one WIB on the
SPE.

In order to avoid that the same sub-volume is processed by two different SPEs at
the same time, we simply eliminate any possibility to process the same volume part
by different SPEs. Therefore the master maintains a state variable for each volume
part indicating if a WIB has already been sent to a worker but has not yet been
processed. Each time the master creates a new WIB for a volume part it decides
by this state variable if the WIB may be sent to a worker for processing or not.
If the WIB currently cannot be sent to a worker it is put into the corresponding
waiting queue for that partition in order to process it at a later time. After a WIB
is processed, the corresponding waiting queue is checked for pending WIBs and they
are assigned to a worker, if necessary.

The RTK framework provides a WIB queue for each worker and uses double
buffering techniques to efficiently transfer the WIBs between master and workers. In
order to exploit this mechanism in an optimal manner the number of independent
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VolumePartOffset Offset of the volume part to be processed
within the complete volume

VolumePartSize Size of the volume part
VolumePartIndex Index of the volume part
VolumeIsInitialized Flag indicating whether the volume part

has to be loaded from main memory or is
initialized with zero

Projections Number of projections to be processed
ProjectionInfo[Projections] Required information about each projec-

tion image such as the base address of the
projection image in main memory and the
projection matrix

Table 4.2: Contents of a work instruction block for a back-projection task.

Algorithm 4: Processing of a back-projection WIB.
Input: Back-projection WIB
foreach (sub-volume Vs of the current partition) do1

Initiate DMA transfer to load sub-volume Vs;2

Wait for DMA transfers of Vs;3

foreach (projection image Ii, i ≤ 0 < wib.Projections) do4

Initiate DMA transfer to load Ii;5

Wait for DMA transfers of Ii;6

Back-project(Ii, Vs);7

end8

Initiate DMA transfer to store sub-volume Vs;9

Wait for DMA transfers of Vs;10

end11

WIBs, e.g. the number of volume parts, must be higher than the utilized number of
SPEs. In order to keep 16 SPEs busy with work, it turns out that it is sufficient to
divide the volume into 64 partitions. In this case four WIBs can be queued for each
SPE.

Data Transfer Analysis. Because the total amount of projection data transfer
DP can hardly be expressed as an analytical expression, we simulated it by a sepa-
rate program. The results are listed in Table 4.1. The projection data transfer for
the considered dataset and the chosen sub-volume configuration thus accounts for
memory transfers of 81 GB between SPEs and main memory.

Using our parallelization strategy the sub-volume data has to be transferred
twice (once for reading and once for writing) for each back-projection task. In order
to decrease the communication of volume data between main memory and the SPEs,
several projection images can be combined to a single back-projection task for simul-
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Projection Sequence Data Transfer

Size Volume [GB] Projections [GB] Total [GB]

1 543.0 81.0 624.0
2 271.5 81.0 352.5
4 135.8 81.0 216.8
8 67.9 81.0 148.9
16 33.9 81.0 114.9

Table 4.3: Main memory data transfer during back-projection processing of a dataset
consisting of 5123 voxels and using sub-volumes with a size of 32× 32× 8

taneous processing, as it is already done to decrease the overall number of projection
tasks. The overall amount of volume data transfer is thus given by

DV = Nx ×Ny ×Nz × 4Bytes× 2× NP

NPS

. (4.3)

NP denotes the total number of projection images and NPS the size of a projection
sequence. Nx, Ny, and Nz are the numbers of voxels of the volume in each dimension,
respectively. Table 4.3 shows the total amount of data transfer for back-projection
tasks using different projecion sequence sizes. It can be seen that at least eight
projections should be combined into a single back-projection task.

4.2.2.2 Main Memory Access

In the previous section we developed a parallelization approach, which reduces the
overall amount of data transfers while not being bottlenecked by communication la-
tencies. In order to gain good memory access performance, however, data alignment,
paging and locality of the data must be considered.

To further speed up access in main memory, we store the sub-volumes sequentially.
So the complete volume is stored sub-volume by sub-volume, instead of line by line,
plane by plane in main memory. In order to mitigate TLB-thrashing3 we use huge
pages of 16 MB size.

By applying the double buffering technique, where the computation uses one data
buffer while the other one is transferred using a DMA command, we are able to hide
data transfer times completely for the back-projection of high-resolution volumes.
A drawback of the double buffering scheme is the required amount of Local Store
memory for the additional projection and sub-volume buffers. In the last section,
however, we showed a practical data partitioning scheme which allows to apply the
double buffering technique during the reconstruction of a real medical CT dataset.

4.2.2.3 Code Optimization

For an efficient implementation of an algorithm on the SPEs one has to exploit their
SIMD capabilities and enable a good instruction scheduling to the two pipelines of

3 A translation lookaside buffer (TLB) is a CPU cache that memory management hardware uses
to improve virtual address translation speed.
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nearest bilinear bilinear
Interpolation mode neighbor unoptimized optimized

SPE execution pipeline even odd even odd even odd

Address computation 14 1 17 1 15 1
Projection access 0 14 10 56 10 30
Voxel increment 3 2 3 2 3 2

Total 17 17 30 59 28 33

Table 4.4: Number of instructions required for the back-projection of a vector of
voxels from one projection image.

each SPE. When looking at the back-projection for a single voxel from one projection
image, one can identify the following three steps:

• Compute the projection coordinates and the address of the associated projection
pixel.

• Read the value of that pixel using nearest neighbor or bilinear interpolation.

• Apply voxel-dependent distance weighting and increment the voxel value ap-
propriately.

The first and the last step can be vectorized by performing the computations for
multiple voxels in parallel. We choose to use vector instructions for neighboring voxels
in x-direction, because each of the sub-volumes is stored in that order. The second
step cannot be vectorized, because the required projection values will usually not be
located in consecutive and aligned memory as required by a vector operation. Each
SPE can issue simultaneously in each cycle (vector) instructions into two different
pipelines. The even pipeline performs fixed and floating-point arithmetic while the
odd pipeline executes only load, store, and byte permutation operations. By a proper
scheduling of instructions, an optimal ”cycles per instruction“ (CPI) ratio of 0.5 can
be achieved. Table 4.4 shows the numbers of instructions required for our algorithm
with different interpolation modes on the two execution pipelines of the SPEs. While
the address computation and voxel increment mainly require arithmetic instructions
that are executed on the even pipeline, the projection data access is executed on the
odd pipeline. We applied loop-unrolling techniques to the iteration over the voxels of
a sub-volume in order to leverage efficient instruction scheduling and achieved code
with a CPI ratio of 0.57 for the case of nearest neighbor interpolation.

Note the high number of instructions required for the data access. This is due to
the fact that the SPEs cannot access basic data elements randomly in a vectorized
way. Up to four instructions are required to load a single value: rotate the address
into the preferred slot of a vector register, load the appropriate vector from mem-
ory, rotate the required element into the preferred slot, and finally shuffle it into the
destination slot of the destination vector [Syne 05]. This is especially a problem for
bilinear interpolation since, in this case, four projection pixels have to be accessed
for each voxel update. This results in poor performance, if bilinear interpolation
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is implemented in a straightforward manner. We decreased the number of instruc-
tions required for the memory access during the back-projection by adapting the data
layout of the loaded projection shadow before performing the actual back-projection.
Therefore, we duplicated for each projection pixel the neighboring column pixel value
into the same vector. This allows us to access two values with just one vector load
instruction and therefore requires only two memory accesses per voxel. The data
layout adaption can be performed at low computational cost because it can be vec-
torized efficiently. The drawback of this method is of course that it requires twice as
much memory to store the projection shadow on the SPEs.

4.3 Results

The filtering and back-projection code was executed on a Blade server board based
on the Cell architecture. Again the measurements were done using the datasets
described in Appendix B.

In order to assess the performance of our implementation we used the ”gettimeof-
day” function on the PPE. This ensures that all overhead during program execution
(e.g., starting the SPE threads) are included in the measurements. In contrast, run-
time measurements solely relying on the SPE decrementer (performance counter on
SPE side) do only include the SPE program runtime, and a representative of all dis-
tinct SPE measurements has to be chosen. We perceived that measurements relying
on the SPE decrementer lead to slightly reduced runtime (approximately 0.1 to 0.2
seconds below the runtime measured with ”gettimeofday”).

During our measurements we removed any outliers by taking only the best run-
time out of five measurements, although runtime deviations of our experiments were
only around 0.01 seconds. After the correctness of the implementation was verified,
we performed the measurements without doing the I/O transfers for loading the pro-
jection images from the hard disk or over the network. This was necessary, in order to
achieve runtime measurements that were not affected by I/O bandwidth limitations
in our current Cell Blade evaluation system.

In a first step, we measured the performance of the filtering code and the back-
projection code separately. Finally, we validated the performance of the overall
pipeline execution (simultaneous, parallel execution of filtering and back-projection
in a pipeline) for various partitioning configurations.

4.3.1 Filtering

The results of the filter execution using 1, 2, 3, 8, and 16 SPEs are shown in Table 4.5.
The speed-up factor relative to the execution with only one SPE is also given, together
with the numbers of projections that can be processed in one second (pps). Using
all 16 SPEs filtering can be done in 0.49 seconds for Dataset (a) and in 1.02 seconds
for Dataset (b). The FFT computations accounted for 86.71% of the total processing
time for Dataset (a) and for 90.78% of the total processing time for Dataset (b). Data
transfer time was negligible for Dataset (b), but consumed 1.11% of processing time
for Dataset (a) and even increased approximately to 5% if all 16 SPEs are used for
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Number of SPEs 1 2 3 8 16

Dataset (a), convolution length 2048
Time [s] 5.84 2.97 1.99 0.82 0.49
Speed-up 1.00 1.97 2.93 7.09 11.80

pps 70.93 139.44 207.95 503.03 836.80

Dataset (b), convolution length 4096
Time [s] 14.64 7.35 4.91 1.89 1.02
Speed-up 1.00 1.99 2.98 7.75 14.42

pps 37.09 73.84 110.62 287.50 534.96

Table 4.5: Performance results of Fourier-based filtering for the two considered
datasets (convolution length is 2048 and 4096, respectively, due to zero-padding).

the computation. This is the reason why speed-up factors do not scale up linearly,
especially not for the smaller dataset.

4.3.2 Back-Projection

We back-projected the cone-beam projections of the two datasets under consideration
into a volume consisting of 512×512×512 voxels. We chose 0.263 mm3 for Dataset (a),
and 0.313 mm3 for Dataset (b) as the largest possible isotropic voxel size where still
all voxels were inside the FOV (see Appendix B for more details).

In Table 4.6 we show the achieved results when executing only the back-projection
using up to 16 SPEs of our dual Cell Blade for both datasets. The results have been
measured using nearest neighbor and bilinear interpolation mode. Again, we give
the speed-up factors relative to the execution with only one SPE and the number of
projections that can be back-projected per second (pps). For convenience, we also
calculated the number of 512 × 512 volume slices, that can be reconstructed in one
second (frames per second, fps).

In nearest neighbor interpolation mode more than 30 projections can be re-
constructed per second using only seven SPEs, which is sufficient for on-the-fly-
reconstruction that is synchronized to the acquisition. Real-time imaging capability
is also achieved in bilinear interpolation mode as soon as more than 12 SPEs are used
for the back-projection.

The speed-up factor scales almost linearly, thus indicating that our back-projection
implementation is not affected by memory bandwidth limitation. We could not ob-
serve communication latencies when profiling our code by instrumenting it with the
SPE decrementer (performance counter on SPE side) either.

Right now, we considered only reconstruction volumes that are contained com-
pletely inside the FOV. When increasing the voxel size, parts of the cubic voxel
volume will be outside the cylindrical FOV, and hence no meaningful values can
be reconstructed in these regions any more. Our optimized implementation takes
advantage of this by ignoring any voxels that lie outside the FOV.

In Figure 4.3 we show the achieved performance of FOV optimized reconstructions
using Dataset (a) for volumes with an increased voxel size, such that only 78.26%,
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Number of SPEs 1 6 7 8 14 15 16

Dataset (a), nearest neighbor interpolation
Time [s] 93.13 15.71 13.50 11.85 6.89 6.47 6.07
Speed-up 1.00 5.93 6.90 7.86 13.51 14.40 15.33

pps 4.45 26.35 30.67 34.94 60.05 63.99 68.16
fps 5.50 32.58 37.94 43.21 74.26 79.14 84.29

Dataset (b), nearest neighbor interpolation
Time [s] 122.34 20.53 17.64 15.44 8.97 8.39 7.89
Speed-up 1.00 5.96 6.94 7.92 13.65 14.58 15.51

pps 4.44 26.45 30.79 35.17 60.57 64.73 68.85
fps 4.18 24.94 29.03 33.16 57.11 61.03 64.92

Dataset (a), bilinear interpolation
Time [s] 166.50 27.91 23.96 20.99 12.12 11.38 10.68
Speed-up 1.00 5.97 6.95 7.93 13.74 14.63 15.60

pps 2.49 14.83 17.28 19.73 34.16 36.38 38.78
fps 3.08 18.34 21.37 24.40 42.25 45.00 47.96

Dataset (b), bilinear interpolation
Time [s] 220.37 36.88 31.65 27.72 16.02 14.95 14.02
Speed-up 1.00 5.97 6.96 7.95 13.76 14.74 15.71

pps 2.46 14.72 17.16 19.59 33.90 36.32 38.72
fps 2.32 13.88 16.18 18.47 31.97 34.24 36.51

Table 4.6: Performance results of back-projection using the CBEA architecture for
the two considered datasets using bilinear interpolation mode.

85.07%, and 92.56% can be reconstructed, respectively. The achieved frames per
second using different numbers of SPEs in nearest neighbor and bilinear interpolation
mode are given. The volume size in z-direction had to be adapted such that all
slices are still in the FOV. It can be seen that proportional to the reduced number of
necessary computations higher frame rates were achieved. Because sub-volumes at the
border of the cylindrical FOV still include voxels lying outside of it, the overhead of
our implementation increases, as theoretically expected, up to 5% for reconstructing
78.26% of the volume.

For the nearest neighbor interpolation mode the performance degrades slightly
due to bandwidth limitation, when reconstructing only 85.07% or 78.26% (maximum
speed-up factors were only 14.57 and 14.48, respectively). This results from the fact
that for sub-volumes with increased voxel sizes the corresponding projection shadows
will increase significantly. However, in bilinear interpolation mode this increased data
transfer overhead was still hidden by the applied double buffering approach. Frame
rates increased from 84.29 fps to 95.66 fps (nearest neighbor interpolation mode) and
from 47.96 fps to 55.72 fps (bilinear interpolation mode).

In the next experiment we executed the filtering and the back-projection in par-
allel in a pipeline. The number of SPEs for filtering and back-projection has to be
chosen statically before execution. Again, we examined the overall performance with
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Figure 4.3: Field-of-view reconstruction with different voxel sizes. The achieved
frames per second (fps) are given for reconstructions using Dataset (a). The per-
centage of the voxel volume that lies inside the FOV is given for each measurement.
Frame rates are given for the two interpolation modes: nearest neighbor (NN) and
bilinear (BL) interpolation.

both nearest neighbor and bilinear interpolation mode. Table 4.7 shows the cor-
responding results for various configurations. When only 8 SPEs of our dual Cell
Blade are used, it is sufficient to execute the filtering with one SPE for maximum
performance for both interpolation modes. The measured overall runtime reflects
approximately the measured execution time of the back-projection with seven SPEs.
Thus, filtering execution could be fully hidden behind the back-projection. In case
of nearest neighbor interpolation more than 30 projections are processed per second,
which still leverages an on-the-fly reconstruction using only one Cell processor. If
one wants to achieve on-the-fly reconstruction also in bilinear interpolation mode at
least two Cell processors have to be used (see Table 4.6). The achieved performance
numbers of the overall pipelined execution validate that on-the-fly reconstruction is
possible even in bilinear interpolation mode for all tested configurations of filtering
and back-projection SPEs. However, maximum performance was only achieved when
two SPEs are used for filtering the projection images in case of Dataset (b).

4.4 Summary

We have developed a parallelized and highly optimized implementation of the FDK
method on the Cell processor. The achieved results demonstrate that a performance
increase of an order of magnitude and more is achievable compared to recent high per-
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Number of SPEs (filtering/back-projection)
using one Cell processor using two Cell processors

1/7 2/6 3/5 1/15 2/14 3/13

Dataset (a), nearest neighbor interpolation
Time [s] 13.60 15.75 18.83 7.39 6.97 7.45

pps 30.44 26.29 21.98 56.06 59.43 55.55
fps 37.64 32.52 27.18 69.33 73.50 68.70

Dataset (b), nearest neighbor interpolation
Time [s] 17.87 20.66 24.69 14.78 9.07 9.67

pps 30.39 26.28 21.99 36.74 59.90 56.16
fps 28.66 24.78 20.74 34.64 56.48 52.95

Dataset (a), bilinear interpolation
Time [s] 24.04 27.95 33.49 11.44 12.19 13.10

pps 17.22 14.81 12.36 36.18 33.95 31.61
fps 21.30 18.32 15.29 44.74 41.99 39.09

Dataset (b), bilinear interpolation
Time [s] 31.87 36.99 44.28 16.21 16.05 17.22

pps 17.04 14.68 12.26 33.49 33.84 31.53
fps 16.06 13.84 11.56 31.58 31.91 29.73

Table 4.7: Overall pipelined execution of filtering and back-projection for the two
considered datasets, bold numbers refer to optimum configurations.

formance general purpose computing platforms. We have shown that with our dual
Cell Blade a complete FDK short-scan reconstruction (including weighting, filtering
and back-projection) can be computed in 6.97 seconds (nearest neighbor interpo-
lation) or 11.44 seconds (bilinear interpolation). It is a huge drawback of the Cell
processor that it does not provide special hardware to efficiently compute the bilinear
interpolation during projection access. We will see in Chapter 6 that other architec-
tures outperform the Cell processor by providing special hardware circuits on-chip
for this processing step.

Nevertheless, we have demonstrated that the Cell processor leverages cone-beam
CT reconstructions on-the-fly for both interpolation modes, which means that all
required computations are hidden behind the scan-time of the used scanner. Con-
cerning real-time imaging, the achieved performance of the FDK method shows that
there is still the possibility for computing additional pre-processing tasks such as
beam hardening, truncation or scatter correction on the dual Cell Blade.

On the one hand the big advantage of the CBEA is its comprehensive program-
ming control since it allows to implement well optimized code; on the other hand it is
also one of its biggest drawbacks because it introduces high implementation complex-
ity. We think that other hardware architectures such as graphics accelerators reveal
their processing power with less implementation complexity, at least in the context
of cone-beam image reconstruction.
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Standard Multi-Core Processors

For a long time, the performance of general-purpose processors could be improved
by increasing clock frequency and instruction level parallelism (ILP). Nowadays, only
diminished gains in performance can be reached by higher processor clock rates. This
results from the difficulty to find enough parallelism in the instruction stream of a
single process to keep higher performance processor cores busy. Another cause is
the increasing gap between processor and main memory speed because the latency
and the bandwidth of dynamic random access memory (DRAM) does not improve
accordingly to processor operating frequencies. Finally, higher clock rates of general-
purpose processors lead to dramatically increased problems in manufacturing, system
design, and deployment. These three arguments, commonly referred to as the ILP
wall, the memory wall and the power wall, respectively, have constituted much of the
motivation for the advent of multi-core processors during the last few years.

5.1 Architecture

The amazing progress in VLSI design has led to the development of microprocessors
consisting of several independent compute cores that can execute multiple application
tasks in parallel. The cores belonging to one CPU often share certain levels of the
on-chip memory hierarchy (e.g., on-chip L2 caches). These processors are commonly
referred to as multi-core or even as many-core CPUs. Current CPU manufacturers
such as Intel and AMD currently provide up to eight compute cores per CPU with
forecasts predicting 32 and even more parallel cores per CPU chip.

In order to take advantage of the parallelism offered by multi-core systems soft-
ware must run in several threads or processes. In most cases the application must
be specifically written to utilize multiple threads. This also requires to identify an
adequate algorithm structure which supports parallel execution.

Modern CPUs additionally feature so-called vector processing units (VPUs) to
They provide the Streaming SIMD Extensions (SSE) which is the SIMD instruction
set extension offered by CPUs from Intel and AMD. It allows to operate on four
single precision floating-point numbers at once. Intel is doing research on processor
chips such as the Larrabee processor, which will even extend the SIMD width and will
therefore be able to process up to 16 single precision elements simultaneously [Seil 08].

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
Cone-Beam CT Reconstruction, DOI 10.1007/978-3-8348-8259-2_5, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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Most modern compilers are able to automatically vectorize code in order to take
advantage of the SIMD facilities of modern CPUs. The performance benefit of vec-
torization is better in parts of the program where many data elements are processed
in the same way. Nowadays most compilers offer the possibility to directly assist the
vectorization of the code by special built-in functions, which are commonly referred
to as intrinsics. Intrinsics are convenient substitutes for one or more inline assembly
instructions.

5.2 Feldkamp Algorithm

Using the supportive functionality of our RTK framework we implemented the pro-
cessing chain of the FDK method as a pipeline architecture. Within this pipeline
the filtering and the back-projection are executed in dedicated stages, respectively,
using a different thread of control for each stage. This makes it possible to com-
pute the corresponding filtering computations of projection n+1 in parallel with the
back-projection of projection n.

In order to do even more computations in parallel we further refined our imple-
mentation of both the filtering stage and the back-projection stage to make use of
the Master/Worker parallelization pattern. When a projection image is processed
by one of these stages, work packages are created, which are then processed by the
corresponding worker threads of the stages. The number of worker threads was TFLT
for the filtering stage and TBP for the back-projection stage.

5.2.1 Filtering

Using the frequency-based convolution approach as described in Section 2.2.2.1 each
image row in a projection image can be processed independently from all other rows.
It is thus easy to parallelize the computations for each projection image. We divided
each projection image into TFLT equally large chunks of consecutive rows and assigned
each chunk to a different worker. This allowed us to compute the filtering of each
chunk simultaneously on the available CPU cores.

In order to efficiently compute the necessary DFTs we used the complex 1-D FFT
implementation of the Intel Integrated Performance Primitives (IPP) software library.
Using the in-place functions ippsFFTFwd_CToC_32f_I and ippsFFTInv_CToC_32f_I
for the forward and inverse transforms, respectively, we simultaneously convolve two
image rows of a projection with the given filter kernel, where one image row defines
the real input and the other one the imaginary input. During initialization of the
FFTs we further used the ippAlgHintFast flag in order to select the fastest available
implementation of the IPP library.

All additional computations have been implemented using intrinsics in order to
compile a highly SIMD efficient code. The complex multiplication in Fourier do-
main was further optimized as our filter kernel was symmetric and, hence, its DFT
contained only real values.
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5.2.2 Back-Projection

In our parallel implementation of voxel-driven back-projection the volume is parti-
tioned into TBP disjoint sub-volumes and each sub-volume is assigned to one of the
available worker threads (again cf. Figure 4.2). The voxels in a sub-volume are then
projected onto the detector plane and updated with the corresponding interpolated
projection values in the respective worker thread. Using this approach there is no
need to synchronize voxel updates since each voxel is updated exactly once for each
projection. All worker threads have read access to the complete projection image.
This results in an efficient sharing of projection data between different worker threads
through the cache hierarchy of the CPU.

In order to ensure that there are no competing write accesses to the volume we
process the projection images sequentially in the order they are acquired. Therefore,
any of the x, y, z loops of Algorithm 2 can be split into disjoint intervals to process
them simultaneously.

We subdivided the whole volume in z-direction into TBP sub-volumes consisting
of several slice images of the volume. Each sub-volume is then assigned to one of the
available worker threads. In theory this approach will scale linearly with the number
of processor cores. Due to the large number of slice images Nz of the volume1 this
parallelization strategy will be sufficient to keep even the next-generation multi-core
systems busy. Note that the overhead from thread creation is negligible because it
happens only once during initialization of the worker threads.

Having found a suitable parallelization approach additional performance improve-
ment can be achieved by vectorizing the code of each worker thread such that the
SIMD facilities of the CPU are used in an efficient manner. Vectorization yields the
highest performance gains in code parts where the same computations are performed
on multiple data elements. As shown in Algorithm 2, the z- and y-loops do only com-
pute the coordinate increments while the actual compute-intensive back-projection,
including the corresponding bilinear interpolation for accessing the projection data,
is done within the x-loop. This loop iterates over all voxels in one row of a slice
(fixed y- and z-coordinate) and performs the same computations on each of them.
We therefore concentrated on vectorizing this loop by processing four consecutive
voxels in x-direction simultaneously using intrinsics.

While multi-threading was already supported by the RTK framework, all of the
vectorization had to be done manually. Current VPUs have two inherent shortcom-
ings. First, they cannot branch independently for individual elements of the vector
and second, they cannot access memory in irregular patterns efficiently. During
back-projection the necessary load instructions of the projection values expose both
of these problems.

At the boundary of the FOV, one voxel may be projected outside of the detector
while its neighbor’s projection is still inside. If a voxel is projected outside of the
detector its update is skipped and processing continues with the next one. In the
vectorized version, these outliers had to be detected and stored in binary masks.
The corresponding projection coordinates were set to (0, 0) in order to avoid illegal
memory accesses. Furthermore, the interpolated projection values for those voxels

1Nz is the number of voxels in z-direction
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Vectorization
Compiler Manual Speedup

Dataset (a) 859.8 547.9 1.57
Dataset (b) 1135.5 722.9 1.57

Table 5.1: Single-threaded performance results of back-projection using the Xeon
workstation with and without manual SIMD optimization (Intel compiler version
11.0.072).

were set to 0, resulting in a voxel increment with the value 0 which is equivalent to
skipping the update.

Due to the projection geometry, neighboring voxels are usually not projected onto
neighboring pixels in the projection image. This results in non-contiguous memory
accesses when loading the projection values. Therefore, the projection values had
to be read in a scalar manner and packed manually into SIMD vectors afterwards.
Bilinear interpolation was then computed using these vectors on the VPU.

5.3 Results

In order to evaluate the performance of our implementation we used an off-the-
shelf workstation from Fujitsu Siemens. It comprises two Intel Xeon Quad-Core
processors (E5410) running at 2.33 GHz and having 16 GB of random access mem-
ory (RAM). The theoretical peak performance of this system is 74.6 Gflops.

We performed the measurements without doing the I/O transfers for loading the
projection images from the hard disk or over the network. This is necessary in order
to achieve runtime measurements that are not affected by I/O bandwidth limitations.
We measured the performance of both the filtering and the back-projection step alone
as well as their simultaneous overall execution. During our measurements we removed
any outliers by taking only the best runtime out of three measurements.

The reconstruction has been done using a volume consisting of 512 × 512 × 512
voxels. The voxel size was chosen accordingly to the geometry such that the whole
volume is inside the FOV (see Appendix B for a description of the measurement
setup). For our evaluations we compiled our implementation using the Intel compiler
in version 11.0.072 and the IPP library in version 6.0.

We achieve a substantial performance improvement of the back-projection com-
putations by manually optimizing the back-projection using SIMD intrinsics. This
is shown in Table 5.1. Although the Intel compiler is known to be very good at
auto-vectorization of program code, our manual SIMD optimization using compiler
intrinsics results in a speedup of the back-projection execution time by 1.57. The ob-
served speedup scales nearly linear with the number of cores used for back-projection.

Additionally the performance is substantially improved when using our paralleliza-
tion approach for multi-core CPUs in combination with our manual SIMD optimized
implementation variant. Table 5.2 shows the achieved performance for the filtering,
the back-projection, and also for the overall execution of the pipeline. It can be seen
that the back-projection performance scales nearly linear when using one, four or
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Number of Filtering Back-Projection Overall
Threads [s] [pps] [s] [pps] [s] [pps]

Dataset (a), convolution length 2048
1 5.8 72.0 547.9 0.8 553.8 0.8
4 3.5 118.8 138.0 3.0 140.0 3.0
8 7.9 52.7 70.6 5.9 72.1 5.8

Dataset (b), convolution length 4096
1 14.5 37.5 722.9 0.8 736.9 0.7
4 5.6 97.9 182.0 3.0 186.0 2.9
8 6.7 81.0 93.6 5.8 96.5 5.6

Table 5.2: Performance results of filtering, back-projection and both combined (over-
all) on the Xeon workstation using one, four and eight cores.

eight cores of our dual quad-core Xeon workstation. The speedup with four and eight
cores is 3.97 and 7.72, respectively. On the other hand, filtering performance is best
using four cores for both datasets, although the achieved speedup does not scale with
the number of cores used. The performance even degrades when using more than
four cores due to synchronization overhead and due to the available main memory
bandwidth.

Using all eight cores our implementation is able to process about 5.6 to 5.8 pro-
jections per second when executing filtering and back-projection (overall execution).
Assuming that the execution time will scale linearly with the number of available
cores and their clock frequency, one would thus need 32 cores running at 3.0 GHz to
compute the reconstruction on-the-fly (30 pps). In a practical system, however, main
memory bandwidth will most likely become a bottleneck.

5.4 Summary
We have developed a quite optimized implementation of the FDK method on general-
purpose processors (Intel- or AMD-based). Both the filtering step and the back-
projection step have been optimized for parallel execution on several processor cores.
The FFTs have been implemented using the IPP software library. Our implemen-
tation of the back-projection includes manual vectorization of the code in order to
make efficient use of the SIMD facilities of modern CPUs. We have shown that it
is possible to achieve a speedup of 1.57 by a manual vectorization compared to the
automatic vectorization of the compiler.

According to our results it is, however, nearly impossible to build systems that
are able to accomplish on-the-fly reconstructions using only a few processor cores of
current general-purpose processors.
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Graphics Accelerator Boards

While graphics accelerator boards are traditionally built for the gaming industry,
nowadays these devices are usable for general computing tasks as well. GPUs are
specialized for compute-intensive, highly parallel computations. In contrast to stan-
dard multi- or many-core architectures much more transistors are implemented for
data processing rather than data caching and flow control. Hence, it is very appealing
to use these architectures as acceleration platform for high-performance computing
tasks in medical devices.

Two GPU vendors are currently offering GPU devices in the market supporting ac-
celerated general purpose implementations: Nvidia and AMD/ATI. Since Nvidia has
recently developed the fundamentally new easy-to-use computing paradigm CUDA
(Compute Unified Device Architecture) for solving complex computational problems
on the GPU, we focus on Nvidia devices in this thesis. The main contributions of this
chapter have been presented at the IEEE Nuclear Science Symposium and Medical
Imaging Conference 2007 [Sche 07b].

6.1 Architecture

CUDA offers a unified hardware and software solution for parallel computing on
CUDA-enabled Nvidia GPUs supporting the standard C programming language to-
gether with high-performance computing numerical libraries1. This unveils the access
to the processing power of graphics cards also for programmers that are not special-
ists in computer graphics. The implementation of the reconstruction task can now be
done without knowing how to (ab)use the existing application programming interfaces
for general-purpose computing; e.g., OpenGL2, DirectX3, or the Brook language4.

Nvidia splits its GPUs into three different branches: GeForce, Quadro, and Tesla.
GeForce devices target the gaming market. The professional graphics domain is
addressed with Quadro devices, and Tesla provides the solution for high-performance
computing. While each of these branches uses the same processor generation, the
main difference refers to the type and amount of installed graphics memory (called

1http://www.nvidia.com/cuda
2 http://www.khronos.org/opengl
3 http://www.microsoft.com/windows/directx
4 http://graphics.stanford.edu/projects/brookgpu

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
Cone-Beam CT Reconstruction, DOI 10.1007/978-3-8348-8259-2_6, 
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GPU GeForce Tesla GeForce Tesla
8800 GTX C870 GTX 280 C1060

Architecture 8 Series 200 Series
Processor Cores 128 240

Processor Clock [MHz] 1350 1296
Gflops [MADD/MUL] 518 933

Bus Width [bit] 384 512
Memory Clock [MHz] 900 800 1107 800

Memory Bandwidth [GB/s] 86.4 76.8 141.7 102.4
Memory [GB] 0.768 1.500 1.000 4.000

Table 6.1: Technical overview of the considered graphics accelerator boards from
Nvidia. The Tesla C870 is identical to the Quadro FX 5600. Likewise is the Tesla
C1060 identical to the Quadro FX 5800. The difference between Quadro and Tesla
is only in reliability of the memory and OpenGL support.

device memory in the following) together with the memory clock rate. For example,
the memory chips of GeForce devices are usually over-clocked resulting in improved
compute performance at the prize of less reliability. Occurring pixel errors on GeForce
devices are considered to be of less importance due to their application in the gaming
market. Quadro devices, on the other hand, target professional graphics applications
and, thus, reliability of the memory is improved at the expense of lower memory
clock rates. Finally, Tesla devices are mainly used in the high performance computing
domain. The installed memory chips in Tesla devices provide the highest reliability.
Tesla devices, however, support only computational applications, because all display
adapters are removed from their boards, and OpenGL support is disabled.

Table 6.1 gives a technical overview of the high-end graphics accelerator boards,
which are considered in this paper. In the following we distinguish two device series:
the 8 series and the 200 series. We consider the GeForce 8800 GTX, the Quadro
FX 5600, and the Tesla C870 GPUs from the 8 series and from the 200 series we
consider the GeForce GTX 280, the Quadro FX 5800, and the Tesla C1060 GPUs.
The theoretical peak performance increased by a factor of 1.8 between GPUs of the
8 series and GPUs of the 200 series. The memory bandwidth, however, only increased
by a factor of 1.6 for the GeForce devices and by a factor of 1.3 for the Tesla and
Quadro devices between the GPUs of the 8 series and the GPUs of the 200 series.

Modern GPUs in general have evolved into highly parallel, multi-threaded many-
core processor architectures accompanied by graphics memory with very high band-
width. The processor is build on a physically separated device and operates as a
co-processor to the CPU (host). CUDA uses the SIMD programming model, since it
provides an easy way to configure and run a huge amount of threads each operating
on different data items. Each thread is executing the same program (kernel), which
can be implemented as a C-function and is invoked by the host program via a special
function call ”syntax“.

The considered GPUs offer 12 to 30 multi-processors each consisting of eight
Stream Processors. A Stream Processor can compute three floating-point operations
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Figure 6.1: Architecture of modern Nvidia GPUs.

per clock cycle (one multiply-add and one multiplication), which results in a theoret-
ical peak performance of 518 Gflops for the high-end GPUs of the 8 series, and 933
Gflops for the high-end GPUs of the 200 series.

Each multi-processor offers to its Stream Processors several resources, which have
to be shared among them. Only a fixed number of registers is available limiting
the maximum number of threads that can be executed simultaneously, and several
data caches are available in order to reduce performance limitations due to memory
bandwidth. Figure 6.1 gives an overview of the GPU architecture.

Stream Processors cannot access host memory directly, which requires to copy
data to the device memory over the PCI-Express bus before kernel execution. A
thread can read from and write to device memory directly (global memory access).
For read-only memory accesses constant or texture caches can be used. The constant
cache is limited by size and requires a special access pattern to achieve high perfor-
mance. In contrast, texture memory is optimized for random access, and provides
hardware-accelerated computation of bilinear and trilinear interpolation. Data items
needed more than once by a thread (read/write) can be saved to register memory,
which is used by the thread exclusively, or it can be transferred to shared memory.
Like constant memory, shared memory requires a special access pattern in order to
respect the GPU’s memory architecture and therefore to deliver high bandwidth.
Furthermore, it can only be shared and synchronized between a small number of
threads, which have to be specified during kernel launch by a so called grid configu-
ration. The threads of a kernel are grouped into 3-D arrays, which are called blocks,
and blocks are grouped into a 2-D array, which is called grid. During the execution



www.manaraa.com

80 Chapter 6. Graphics Accelerator Boards

of a kernel only the threads of the same block can be synchronized. The grid-block
configuration also specifies the order of thread execution and the identifier of each
thread, which is commonly used to identify corresponding computation and/or the
data item to operate on.

6.2 Feldkamp Algorithm
Again, the processing chain of the FDK method can be mapped to the pipeline
architecture of the RTK framework by executing the filtering and back-projection
on dedicated stages, respectively. In addition to the stages for filtering and back-
projection we introduced a projection upload stage and a volume download stage.
The device memory for projections is allocated inside the projection upload stage,
and the device memory for the volume is allocated inside the back-projection stage.
The stages are then connected single-threaded in order to share the same CUDA
device context. In that way it becomes possible to use the same device data structures
throughout the complete processing pipeline.

The first processing step, which is executed inside of the projection upload stage,
takes care to transfer the projection image to the device memory of the graphics card.
While the volume download stage is responsible to transfer back the volume to the
host memory, the filtering and the back-projection are executed between the upload
and download stages, respectively.

6.2.1 Filtering

The filtering stage is implemented using the CUFFT library of the CUDA package
to compute the convolution with the given filter kernel. This library supports the
calculation of complex FFT. All necessary computations are mapped to several succes-
sive CUDA kernel executions: data rearrangement to complex format, zero-padding,
batched FFT, multiplication with the DFT of the filter kernel, batched IFFT, and
data rearrangement to the original format. Each CUDA kernel computes all rows
of a complete projection image simultaneously in order to make efficient use of the
multiprocessors on the graphics card.

6.2.2 Back-Projection

In order to compute the voxel-driven back-projection on the GPU we store the com-
plete volume in global device memory, because in CUDA, global memory is the only
memory type that can be accessed for writing. The back-projection for a projec-
tion image is computed as soon as the filtering stage has finished the corresponding
convolution task.

Our back-projection implementation uses a loop on the host (CPU) to prepare
and to control the execution of the GPU program code, which is commonly referred
to as the kernel program, on the device (GPU). Algorithm 5 gives an overview of
our implementation strategy: projection images are streamed to the GPU and are
processed immediately while the volume keeps fixed in device memory. We further
store each projection matrix P̌i in constant device memory and bind a texture context
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Algorithm 5: Pseudo-code of our GPU-based back-projection im-
plementation.

Input: Np projection images Ii , 0 ≤ i < Np

Input: Np projection matrices P̌i , 0 ≤ i < Np

Data: volume V consisting of Nx ×Ny ×Nz voxels stored in device
memory

Host:1

for (i = 0; i < Np; i = i + 1) do2

Load memory of Ii to device memory;3

Load P̌i to constant device memory;4

Call Kernel;5

end6

Download volume V to host memory;7

Kernel:8

Compute x̌ and ž coordinate of voxel; // cf. Figure 6.29

// Compute base-increment
rxz = P̌i[0, 0] · x̌ + P̌i[0, 2] · ž + P̌i[0, 3];10

sxz = P̌i[1, 0] · x̌ + P̌i[1, 2] · ž + P̌i[1, 3];11

txz = P̌i[2, 0] · x̌ + P̌i[2, 2] · ž + P̌i[2, 3];12

for (y̌ = 0; y̌ < Ny; y̌ = y̌ + 1) do13

r = rxz + P̌i[0, 1] · y̌;14

s = sxz + P̌i[1, 1] · y̌;15

t = txz + P̌i[2, 1] · y̌;16

ǔ = r
t
; // Dehomogenize17

v̌ = s
t
; // Dehomogenize18

μ = 1
t2
; // Distance weight19

V[x̌, y̌, ž] = V[x̌, y̌, ž] + μ texfetch(Ii, ǔ, v̌); // Accumulate20

end21

to the projection data. Texture memory is not only optimized for fast randommemory
accesses, it further enables a performance improvement by using the texture hardware
of the GPU either for nearest neighbor interpolation or hardware-accelerated bilinear
interpolation.

Then we invoke our back-projection kernel on the graphics device. Each thread
of the kernel computes the back-projection for all voxels of a certain column in a
volume slice (see Figure 6.2). Instead of calculating for each voxel the whole matrix-
vector product (nine multiply-add operations), six multiply-add operations can be
avoided in the innermost loop by incrementing the homogeneous coordinates with
the appropriate column of P̌i for neighboring voxels in y-direction.

The incremental back-projection implementation does not only reduce the number
of arithmetic operations (cf. Section 2.2.3) but it also reduces the register usage of
the corresponding kernel program to only ten registers (see Figure 6.3).
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Figure 6.2: Perspective geometry of the C-arm device (the v̌-axis and ž-axis are not
necessarily parallel) together with the parallelization strategy of our back-projection
implementation on the GPU using CUDA (the x̌-ž plane is divided into several blocks
to specify a grid configuration, and each thread of a corresponding block processes
all voxels in y̌-direction).

Using more than ten registers would reduce the number of threads that can be
executed simultaneously by the kernel program. The multiprocessor warp occupancy
can be used as an indicator of the ability to hide latencies of device memory accesses
behind arithmetic computations (see Figure 6.3). A higher warp occupancy will,
therefore, more likely result in a better thread scheduling on the device. While
the threads of a warp have to wait for the completion of a memory transfer the
threads of another warp can use the waiting time for computations. More registers
are available per multi-processor on GPUs of the 200 series. This significantly relaxes
the requirement on register usage.

The increased number of registers on GPUs of the 200 series makes it possible to
loop over a few projection images in the inner-most loop (see Algorithm 6). Using
this approach, a huge amount of previously required global memory accesses can be
avoided. For example, looping over two projections in the inner-loop requires only
half as much global memory accesses and looping over three projections even requires
only one-third of the required global memory accesses.

In order to achieve high memory bandwidth on GPUs of the 200 series the volume
memory layout had to be padded appropriately. The memory architecture of these
devices is taken into account by padding each row such that its total size in bytes is
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Figure 6.3: Dependency of the multiprocessor warp occupancy on the register usage
for the considered GPUs of the 200 series (a), and the considered GPUs of the 8 series
(b). Our CUDA implementation uses only 10 registers. Register usage has been much
more important on the G80 device series due to the lower number of available registers
per multi-processor.
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Algorithm 6: Pseudo-code of the GPU-based back-projection that
loops additionally over several projections.

Input: Np projection images Ii , 0 ≤ i < Np

Input: Np projection matrices P̌i , 0 ≤ i < Np

Input: Projection sequence size Nseq

Data: volume V consisting of Nx ×Ny ×Nz voxels stored in device
memory

Host:1

for (i = 0; i < Np; i = i + Nseq) do2

for (j = i; j < i + Nseq; j = j + 1) do3

Load memory of Ii to device memory;4

Load P̌i to constant device memory;5

end6

Call Kernel;7

end8

Kernel:9

Compute voxel x̌ and ž coordinate;10

// Compute base-increments for each projection
for (j = i; j < i + Nseq; j = j + 1) do11

rxz[j] = P̌j[0, 0] · x̌ + P̌j[0, 2] · ž + P̌j[0, 3];12

sxz[j] = P̌j[1, 0] · x̌ + P̌j[1, 2] · ž + P̌j[1, 3];13

txz[j] = P̌j[2, 0] · x̌ + P̌j[2, 2] · ž + P̌j[2, 3];14

end15

for (y̌ = 0; y̌ < Ny; y̌ = y̌ + 1) do16

vtmp = 0.0 ; // Temporary back-projection result17

// Unrolled:
for (j = i; j < i + Nseq; j = j + 1) do18

r = rxz[j] + P̌j[0, 1] · y̌;19

s = sxz[j] + P̌j[1, 1] · y̌;20

t = txz[j] + P̌j[2, 1] · y̌;21

ǔ = r
t
; // Dehomogenize22

v̌ = s
t
; // Dehomogenize23

μ = 1
t2
; // Distance weight24

vtmp = vtmp +μ texfetch(Ij, ǔ, v̌) ; // Accumulate25

end26

V[x̌, y̌, ž] = V[x̌, y̌, ž] + vtmp ; // Final accumulation27

end28
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Figure 6.4: Execution time for different grid configurations.

a multiple of 32, but not by 512. In the following we call the adaption of the memory
layout address aliasing fix (aaf). This is necessary in order to avoid problems due to
partition camping, which can degrade device memory bandwidth drastically on GPUs
of the 200 series. Unfortunately, the provided CUDA memory allocation routines do
not care about this issue automatically (including CUDA version 2.1). While this
behavior is not documented by Nvidia the mentioned optimization is not obvious to
the programmer.

6.3 Results

In order to evaluate the filtering and back-projection performance of our GPU imple-
mentation, we installed three different workstations each equipped with two graph-
ics accelerators. In each workstation we used an Intel Xeon Quad-core processor
(E5440) running at 2.83 GHz. We show results obtained with six different graphics
accelerators from Nvidia, namely the GeForce 8800 GTX, the GeForce GTX 280, the
Quadro FX 5600, the Tesla C870, the Quadro FX 5800, and the Tesla C1060.

The performance has been evaluated with the same datasets and with the same
configurations which have already been used in Sections 5.3 and 4.3 (see Appendix B
for a detailed description).

It is very important to choose an appropriate grid configuration. The grid con-
figuration influences both the global memory access pattern and the texture cache
usage. Our experiments show that it is more important to optimize the global mem-
ory accesses than optimizing the texture cache usage (see Figure 6.4). It can be seen
that it is important to have at least 64 to 128 threads in a block in x-direction, oth-
erwise reconstruction performance is significantly degraded. This is more important
on GPUs of the 8 series as can be seen in Figure 6.4 as well. For both device series, a
grid configuration of 256×2 has been demonstrated to be optimal. It is an interesting
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Figure 6.5: Comparison of back-projection performance when using a loop over sev-
eral projections in the inner-most back-projection loop.

observation that less reconstruction performance is achieved on GPUs of the 8 series
using device driver 181.20 compared to the performance that is achievable using de-
vice driver 169.21. In addition to that the grid configuration significantly influences
the reconstruction performance on devices of the 8 series using the more recent driver.

In the next step we fix the grid configuration and evaluate how the back-projection
performance is influenced when looping over a few projection images in the inner-
most loop (see Algorithm 6). Figure 6.5 shows the achieved performance results.
Unfortunately, GPUs of the 8 series could not execute any back-projection kernel
where the inner-most loop has been unrolled due to their limited number of GPU
registers.

In this regard, a rectification-based approach has the potential to further im-
prove the reconstruction speed [Ridd 06] since it would require fewer computations
and projection matrix accesses. This would allow to implement unrolled loops over
projections in the inner-most back-projection loop also for GPUs of the 8 series, and
even more unrolled loops for GPUs of the 200 series without an increase in regis-
ter usage. We, however, intentionally avoided rectification-based approaches, as was
already outlined in Section 2.2.2.2.

It can further be seen in Figure 6.5 that the graphics driver follows different
driver paths for each branch of devices. For example, it is more efficient to save all
projections in one flattened 2-D texture than in a 3-D texture using the GeForce
devices. Using Quadro or Tesla devices, however, it is more efficient to use a 3-
D texture. Unrolling the inner-most loop over two projection images proved to be
a very efficient optimization trick. The bandwidth limitation of back-projection is
reduced due to the saved global memory accesses.

In the following we used for each device its optimal implementation which can
easily be extracted from Figure 6.5. For example, we unroll the inner-most loop twice
for GPUs of the 200 series, and do no unrolling on GPUs of the older 8 series because
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Hardware Filtering Back-Projection Overall
[s] pps [s] pps [s] pps

Dataset (a), convolution length 2048

Quadro FX 5600 2,6 158,6 8,3 50,2 12,0 34,4
Tesla C870 2,3 181,6 8,1 51,4 11,4 36,3

GeForce 8800 GTX 2,2 184,8 7,5 55,0 10,7 38,6

Quadro FX 5800 1,6 265,4 5,4 76,4 7,9 52,3
Tesla C1060 1,3 309,0 5,2 79,3 7,3 57,1

GeForce GTX 280 1,5 281,6 4,6 89,2 7,1 58,5

Dataset (b), convolution length 4096

Quadro FX 5600 6,6 82,9 11,5 47,3 19,8 27,5
Tesla C870 6,0 91,0 11,2 48,5 18,5 29,4

GeForce 8800 GTX 5,9 91,9 10,6 51,3 17,8 30,5

Quadro FX 5800 3,9 138,5 8,5 63,9 13,5 40,2
Tesla C1060 3,5 156,5 8,2 66,1 12,6 43,1

GeForce GTX 280 3,6 153,0 6,7 80,7 11,4 47,5

Table 6.2: GPU performance results of filtering and back-projection for the considered
devices of the 8 series and 200 series.

it has not been possible on the these devices. In Table 6.2, we show the timing
measurements for the filtering, back-projection, and also for the overall execution for
each device under consideration. We also give the numbers of projections that can
be processed per second (pps).

Comparing the measured results of the Tesla and Quadro devices we achieved
slightly better reconstruction speed for the Tesla devices, although Tesla and Quadro
devices of the same GPU series are based upon the same hardware components. We
think that this difference results from overheads caused by frequent thread context
changes on the Quadro devices since we also used the Quadro device as the primary
display adapter in our test systems.

The Fourier-based filtering is not affected by memory bandwidth, and between
GPUs of the 8 series and the 200 series the theoretical speedup of 1.8 due to computing
resources is nearly reached. This is, however, not the case for the back-projection.
The difference in execution times for the Quadro and GeForce follows roughly the
difference in device memory bandwidth when no loop unrolling is applied. This is an
indicator that our back-projection performance is bandwidth-limited. In this regard,
the loop over multiple projections in the innermost back-projection loop proved to
be a very effective optimization. Thus, the increase in performance between the two
considered GPU series does not follow the speed-up in device memory bandwidth
any more. Instead the reached speed-up factor is right in the middle between the
speed-up that is possible due to the increased amount of computing resources and
due to the higher memory bandwidth.
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Under the assumption that practical cone-beam CT scanners acquire 30 projec-
tions per second, all considered devices allow to compute the FDK reconstruction
on-the-fly. However, in an on-the-fly reconstruction for Dataset (b) a small num-
ber of projection buffers would be required for the Quadro and Tesla devices of the
8 series since their reconstruction performance is a little bit under the required 30
projections per second. On the other hand, the GPUs of the 200 series allow to im-
plement even more required preprocessing steps on the GPU while still running an
on-the-fly reconstruction.

6.4 Summary
We have presented an optimized CUDA-based implementation of the FDK method.
The achieved performance leverages cone-beam CT reconstructions on-the-fly, which
means that we can hide all required computations behind the scan-time of the used
X-ray acquisition device.

We have shown that a straight-forward implementation of back-projection is lim-
ited by device memory bandwidth. We have additionally developed an implemen-
tation that overcomes this limitation by looping over multiple projections in the
innermost back-projection loop. The workaround is, however, expensive in regard to
register usage such that it could only be applied to the GPU devices of the 200 series
and above.

In contrast to traditional implementation approaches using OpenGL and shading
languages, for example, the CUDA architecture enables the non-graphics programmer
to implement efficient GPU code for general-purpose computations in a more simpli-
fied and appropriate way. With respect to the implementation of the FDK method
the CUDA-based approach has required much less implementation effort than an
optimized CBEA-based implementation.



www.manaraa.com

Chapter 7

FPGA-Based Hardware

Besides off-the-shelf graphics cards, reconfigurable hardware has been gaining atten-
tion in the field of massively parallel high-performance computing as well. Several
computer manufacturers offer FPGA-based accelerator components together with
dedicated libraries in order to speed up the execution of numerically intensive codes.
Such hardware components are particularly appropriate for applications in the signal
processing domain such as image or video compression, for instance.

Generally speaking, an FPGA is a dynamically reconfigurable microchip that
covers logical hardware blocks (e.g., look-up tables), arithmetic units (e.g., multiply-
add blocks), as well as I/O functionality [Meye 08]. Todays FPGA designs typically
run at clock rates of 100 MHz up to 500 MHz. An FPGA must be loaded with an
appropriate firmware (also known as bitstream) before it provides its functionality.
The generation of such a bitstream is commonly a complex process that involves a
series of software tools covering the steps of netlist synthesis and place-and-route,
amongst others. However, the details of the firmware generation process are far
beyond the scope of this thesis. In short, a higher-level representation of the hardware
functionality (typically given as VHDL code or as Verilog code) is turned into the
actual firmware to be loaded into the FPGA.

The main contributions of this chapter have been presented in part at the Sym-
posium on Simulation Techniques 2005 [Sche 05].

7.1 Architecture of the ImageProX Hardware

As an example of an FPGA-based accelerator hardware, we focus on the ImageProX
(image processing accelerator) board that has been developed at Siemens Healthcare
and was released in 2006. The ImageProX board uses either a 64 bit PCI interface
(66 MHz) or a 64 bit PCI-X interface (133 MHz) to connect to the host PC. It covers
nine Xilinx Virtex-4 FPGAs (1× Virtex-4 SX55, 8× Virtex-4 SX35), each of which
is equipped with up to 1 GB of external DDR2 SDRAM memory. The ImageProX
board comprises two identically organized rings of four Virtex-4 SX35 chips each,
with the even more powerful Virtex-4 SX55 FPGA representing the core control and
interface unit of the design.

Figure 7.1 clearly shows the ImageProX architecture with its nine Xilinx FPGAs.
See [Heig 07] for further architecture details.

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
Cone-Beam CT Reconstruction, DOI 10.1007/978-3-8348-8259-2_7, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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Figure 7.1: FPGA-based ImageProX accelerator board.

Assuming a system clock rate of 200 MHz and counting the aforementioned arith-
metic units of the FPGAs only (while ignoring that standard FPGA logic can also
be used for computing purposes), ImageProX offers a peak performance of more than
800 Giga operations per second. It must be pointed out that FPGAs currently offer
fixed-point arithmetic only. If, however, floating-point arithmetic is required for the
sake of numerical accuracy, floating-point units must be built ”manually” using the
available fixed-point units. This typically leads to inefficient designs that cannot cope
with compute architectures that natively support floating-point operations.

7.2 Feldkamp Algorithm

Our ImageProX-based implementation of the FDK method covers the two essential
steps of filtering the rows of each individual projection as well as back-projecting the
filtered projection data into the volume.

7.2.1 Filtering

As was already mentioned above, a significant downside to our FPGA-based approach
is that it is no longer possible to use floating-point arithmetic, as is the case for con-
ventional CPU-based implementations, for example. Consequently, it is necessary
to realize the whole processing chain of the convolution using fixed-point numbers
instead. In order to simulate the effects of fixed-point calculations on the accuracy
of the final numerical results, we have developed a highly flexible and bit-accurate
software prototype of the hardware design. It covers both the FFT routines as well as
different scaling strategies of the involved fixed-point data types. Additionally, vari-
ous hardware restrictions of the FPGA architecture had to be considered throughout
the simulation task to achieve optimal performance and to meet the resource restric-
tions on the chips.
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In order to simulate the convolution chain using fixed-point data types, we based
our software prototype on the SystemC library1. This library offers the possibility to
use variables with limited accuracy, thus facilitating the simulation of configurable
bit-widths of the involved data types. The simulation itself can be divided into two
different parts. First, the involved fixed-point FFT and IFFT computations have to
be simulated bit-accurately with different input and output bit-widths and with an
appropriate internal scaling strategy. In a second step, the intermediate computing
stages have to be implemented taking into account the input and output bit-widths of
the FFT and the IFFT. In order to keep the input signals properly scaled within the
FFT computations, we selected two different approaches. We will refer to them as
block floating-point mode and unscaled precision mode, respectively. In the following,
we are looking for a fixed-point implementation on the ImageProX board that employs
the FFT cores of the Xilinx CoreGen Library2.

7.2.1.1 Block Floating-Point Mode

In the block floating-point mode, the complexity of scaling is integrated almost com-
pletely into the FFTs. As the data moves from stage to stage through the calculation,
the magnitudes of the numbers in the sequence generally increase, which means that
they can be properly scaled by right shifts. In this case, we test after each butterfly
computation, whether an overflow has occurred. Whenever an overflow has occurred,
the entire sequence (part of which will be new results, part of which will be entries
yet to be processed) is shifted right by one bit and the computations are continued
at the point at which the overflow has occurred. The block exponent records the
number of applied shifts. It can be shown that there are only two overflow events
possible within each FFT stage [Welc 69]. One advantage of this approach is that
only a minimum of computations is required for scaling purposes in between the FFT
computations.

The processing chain looks as follows. The 16 bit entries of the block-scaled
input vectors3 are padded with zeros to a length of 24 bit. Then, the FFT and
the multiplication with the DFT of the filter kernel (32 bit block-scaled fixed-point
numbers in our case) are performed. After the multiplication, the resulting numbers
are 56 bit wide. We simply chop off the trailing 32 bits to apply the IFFT with
again 24 bits on input. Finally, the results of the IFFT (24 bit each) are truncated to
16 bits for the output. For improved accuracy, we also tried out this approach with
35 as the input and output bit-width of both the FFT and the IFFT.

7.2.1.2 Unscaled Precision Mode

The scaling inside the FFT blocks is done differently in unscaled precision mode.
Within each FFT stage, the bit-width of the results is increased by one. Therefore,
during the computations, overflows cannot occur anymore. Analogously, this strategy

1 See http://www.systemc.org.
2See http://www.xilinx.com.
3 The complex value integer pairs of the input vector of an FFT block are represented with a

single scale factor (block exponent) that is shared among all complex value integer pairs of that
vector.
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can be understood as introducing a global right shift before each stage without loosing
the least significant bit. In contrast to the previous approach, this technique exhibits
the disadvantage that the output sequence of the FFT may not be properly scaled
anymore. Therefore, a more advanced scaling technique is needed in between the FFT
and the IFFT block. We will refer to our implemented technique as dynamic scaling.
During the dynamic scaling, the minimum number of irrelevant bits to the right of
the sign bit of all numbers of the current data vector is computed. Afterwards, all
vector elements are left-shifted by that number, and the block exponent is adapted
appropriately. This results in a simplification of the hardware implementation of the
FFT and IFFT routines, which in turn leverages their optimization for processing
speed. The loss of efficiency in the dynamic scaling stages in between the FFT
and the IFFT can easily be accounted for by the use of pipelining in the hardware
implementation [Henn 03].

The processing chain now involves the computation of the FFT of input vectors
of (zero-padded) 24 bit numbers using the unscaled precision mode. Therefore, the
output bit-width after the FFT block4 is 37 bit for the case of a 4K convolution (or
38 bit for the case of an 8K convolution). Due to FPGA hardware constraints of the
used Xilinx chips related to the internal architecture of multipliers, the values of the
output sequence are truncated to 35 bits, and a dynamic rescaling is performed right
before the multiplication stage. The 67 bit wide entries of the resulting product vector
(recall that the DFT of the filter sequence is given as a vector of 32 bit numbers) are
truncated to 36 bits, and a dynamic rescaling is performed again. Then, the vector
entries are truncated to the input bit-width of the IFFT (i.e., 24 bit). After the
IFFT, a final dynamic rescaling is introduced before truncating the vector entries to
the required output bit-width with minimal loss of accuracy.

7.2.1.3 Implementation

The final FPGA implementation was realized at Siemens Healthcare. The filtering
stage is completely implemented as part of the Virtex-4 SX55 firmware and runs
fully pipelined at a clock rate of 200 MHz. Since two projection rows are filtered
simultaneously, this yields a processing speed of 400 Mega samples per second. With
each sample being represented as a 16 bit fixed-point value, the filtering stage is
thus able to process 800 MByte of projection data per second, which exceeds the
peak bandwidth of the 66 MHz PCI interface and is close to the peak bandwidth of
about 1 GByte per second of the 133 MHz PCI-X interface. Consequently, the filtering
stage does not represent a data processing bottleneck. The FFT/IFFT blocks of the
ImageProX filtering stage are generated using the Xilinx CoreGen library. Internally,
a block floating-point format is employed in oder to meet the size restrictions of the
FPGA chip.

4 Using the unscaled precision mode of the Xilinx CoreGen library the output data width of the
FFT blocks equals (input data width+ log2(point size) + 1).
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Figure 7.2: Design of the back-projection stage within an SX35 FPGA.

7.2.2 Back-Projection

A sophisticated FPGA-based high-performance implementation of the FDK method
is out of scope of this thesis. Nevertheless, we briefly outline the final implementation
that has been done at Siemens Healthcare.

The back-projection is accomplished simultaneously by the eight Virtex-4 SX35
FPGAs. As is the case for both the Cell-based as well as the GPU-based imple-
mentations, the volume is being reconstructed in a blockwise manner. In a typical
reconstruction setting with nearly optimal load balancing, each of the SX35 chips will
store approximately the same number of projection images in its external SDRAM
memory. Hence, each of the SX35 chips is responsible for back-projecting its own set
of projection images into the current volume block.

Analogous to the filtering engine, the back-projection design is fully pipelined as
well, such that a peak speed of about 25 Giga back-projection steps per second can
be achieved in theory: 200 MHz × 8 SX35 FPGAs × 16 back-projection pipelines per
SX35 FPGA. Figure 7.2 illustrates the design of the back-projection stage within an
SX35 chip; 16 so-called parallel back-projection units (PBUs) simultaneously read a
portion of the FPGA-internal memory that stores the portion of the current projec-
tion to be back-projected into the volume. The current volume block to be written
is kept in a separate portion of FPGA-internal memory (denoted as Local image
memory in Figure 7.2).

It is important to point out that the back-projection phase can only start as soon
as all projections (or at least a significantly large portion of projections) has been
transferred into the FPGA-external memories. An on-the-fly reconstruction that
immediately processes and back-projects a projection as soon as it becomes available
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Unscaled precision Head phantom [bits] Thorax phantom [bits]

4K convolution
23 bit FFT 14 (14.98) 15 (15.00)
24 bit FFT 14 (14.98) 15 (15.00)

8K convolution
22 bit FFT 14 (14.84) 14 (14.95)
24 bit FFT 14 (14.84) 14 (14.95)

Table 7.1: Fixed-point filtering accuracy simulation results using the unscaled preci-
sion scaling strategy. The minimum (and average) number of vanishing most signifi-
cant bits of the absolute difference to a reference implementation in double floating-
point precision are given.

is therefore not possible using this ImageProX implementation. Again, we refer to
[Heig 07] for further details.

7.3 Results

7.3.1 Simulation of Bit-Accurate Filtering

Throughout the evaluation of the accuracy of our different scaling approaches, we
used projection images that are generated with the simulation tool DRASIM that had
been provided by Siemens Healthcare. We used two analytic phantom descriptions:
the Head Phantom and the Thorax Phantom. Descriptions of these phantoms can be
found on the FORBILD website5. In order to measure the accuracy of our results, we
compared each computed signal to the corresponding one that was computed using a
reference code based on double-precision floating-point arithmetic using a standard
Shepp-Logan filter kernel. For the bit comparison of two numbers, we counted the
number of vanishing most significant bits of their absolute difference. Then, for each
result vector, both the minimum and the average of the determined corresponding
leading bits are used.

Table 7.1 shows the measured accuracies using the unscaled precision arithmetic.
The results demonstrate that this approach yields very good accuracy in comparison
with the double-precision floating-point results. The measured accuracy does not
change even when we tweak the input bit width of the FFTs to match optimally the
hardware restrictions both in the 4K convolution case with an input bit-width of 23
bits and in the 8K convolution case with an input bit-width of 22 bits.

Because of its advantageous structure with regard to hardware implementation
and resources on the ImageProX board, we turned our attention more on the block
floating-point arithmetic. In Table 7.2, the measured accuracies using the block
floating-point scaling strategy are given. The achieved accuracy is about 9 to 10
bits both for 24 bit and 35 bit FFT structures. The loss of several valid bits results

5 http://www.imp.uni-erlangen.de/phantoms
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Block floating-point Head phantom [bits] Thorax phantom [bits]

4K convolution
24 bit FFT 10 (10.98) 11 (11.00)
35 bit FFT 10 (11.38) 11 (11.35)

4K convolution (improved)
24 bit FFT 11 (11.98)
35 bit FFT 14 (14.98)

8K convolution
24 bit FFT 10 (10.44) 9 (9.96)
35 bit FFT 10 (10.65) 10 (10.43)

Table 7.2: Fixed-point filtering accuracy simulation results using the block floating-
point scaling strategy. The minimum (and average) number of vanishing most signif-
icant bits of the absolute difference to a reference implementation in double floating-
point precision are given.

Back-Projection Overall
[s] pps [s] pps

Dataset (a) 3.9 107.3 11.2 36.9
Dataset (b) 4.4 124.5 15.0 36.3

Table 7.3: Reconstruction performance results of back-projection and overall recon-
struction including filtering for the ImageProX board.

from the bit truncation after the multiplication with the DFT of the filter sequence.
Therefore, we extended the scaling strategy of the block floating-point mode after the
multiply stage by performing first a truncation to 35 bits and second by a dynamic
rescaling afterwards. Then, the sequence is truncated to match the input size of the
IFFT. Now, the results are as expected for the 35 bit case, but not much better for
the 24 bit case (see block floating-point improved in Table 7.2).

We again refer to [Sche 05] for further details.

7.3.2 Filtering and Back-Projection

The performance of filtering and back-projection has been evaluated with the same
datasets and with the same configurations which have already been used in the pre-
vious sections (see also Appendix B).

Table 7.3 shows the reconstruction performance of a PCI-based ImageProX ac-
celerator board. The comparison of the back-projection speed and the overall recon-
struction speed reveals that the reconstruction performance of this platform is limited
by the bandwidth of the PCI bus. In theory, the PCI-X bandwidth is twice as high as
the PCI bandwidth such that a correspondingly higher overall performance will result
as soon as the PCI-X implementation is used instead. All filtering computations are
completely concealed behind the projection upload over the PCI-X bus.
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Currently, it is only possible to upload and filter the projection images on-the-
fly, since our implementation requires all projection images in order to compute the
back-projection result. However, the back-projection computation using the Image-
ProX accelerator is as fast that it takes less than five seconds to back-project each of
the datasets that are given in Table 9.1. Compared to the other considered hardware
architectures the ImageProX accelerator thus delivers the fastest back-projection per-
formance.

7.4 Summary
In this section we have developed a bit-accurate simulation framework for the filter-
ing step. Furthermore, we have presented results for fixed-point convolution-based
filtering, employing various scaling approaches and bit widths in the different compu-
tation stages. Our simulations include different scaling strategies for both the FFT
computations as well as the intermediate processing steps of the convolution chain.
Finally, we have shown a suitable configuration for the FPGA-based filtering imple-
mentation. This has also been our main contribution to the final FPGA-based FDK
implementation on the ImageProX board which has been done at Siemens Healthcare.

Furthermore, we have briefly outlined and evaluated the mentioned FPGA-based
implementation on the ImageProX accelerator. Although on-the-fly reconstruction is
not supported, the accelerator board provides extremely fast back-projection process-
ing thus being able to present the final reconstruction result to the physician nearly
in real-time. A downside of the accelerator board is its PCI-based host connection,
which results in significantly reduced overall reconstruction performance when com-
pared to its back-projection processing speed.
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Performance Optimization of Selected
Feldkamp Alternatives

Although many CT systems use the FDK method to solve the 3-D image recon-
struction task, it is not without its short-comings. Therefore, we have described
in Section 2.3 two alternative approaches: the theoretically exact and stable M-line
method applied to a short-scan circle-plus-arc acquisition (Section 2.3.1) and the
simultaneous algebraic reconstruction technique as a representative of the iterative
approaches (Section 2.3.2).

While a thorough evaluation on several hardware platforms has been out of scope
of this thesis, we evaluate in this chapter each of these techniques on an acceleration
device that is – in our opinion – particularly well suited for a high performance
implementation of the respective algorithm. In the following section we develop a
highly optimized CBEA-based implementation of the M-line method. Section 8.2
then presents a CUDA-based implementation of the most time-consuming processing
steps of iterative reconstruction approaches; the forward- and the back-projection.

We have chosen the CBEA for the M-line method because the CBEA provides
comprehensive control in programming its processing cores, which may be a big ad-
vantage for the processing of the additional filtering steps. On the other hand GPUs
may be the ideal candidates to implement the forward-projection step due to their
texture units, which provide hardwired interpolation in the voxel volume. The per-
formance evaluation of the M-line method on the CBEA has been presented at at the
International Meeting on Fully Three-Dimensional Image Reconstruction in Radiol-
ogy and Nuclear Medicine 2007 [Sche 07a], and our CUDA-accelerated forward- and
back-projection module has been presented at the International Workshop on New
Frontiers in High-performance and Hardware-aware Computing 2008 [Wein 08] and at
the IEEE Nuclear Science Symposium and Medical Imaging Conference 2009 [Keck 09a].

8.1 M-line Method

In order to enable theoretically exact and stable FBP reconstruction in standard
clinical scenarios we implemented a highly performance optimized version of the M-
line method on the CBEA. Our software framework allows to compute the filtering

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
Cone-Beam CT Reconstruction, DOI 10.1007/978-3-8348-8259-2_8, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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and back-projection in parallel to the data acquisition, making it possible to deliver
an on-the-fly-reconstruction.

In the following we consider the parallelized implementation and optimization of
the M-line method and we demonstrate for the first time an on-the-fly-reconstruction
while projection data are acquired. Our implementation supports the case of a non-
ideal data acquisition and can thus reconstruct datasets from real C-arm CT scanners.
We also compare the achieved results with our optimized CBEA implementation of
the FDK method, which has been presented in Section 4.

8.1.1 Implementation

We implemented the basic processing chain of the M-line algorithm as a pipeline
consisting of dedicated stages. One pipeline stage is responsible for loading the pro-
jections from the hard disk or over the network. As soon as a projection is available
it can be processed by the subsequent pipeline stages. Our software framework ex-
tremely simplifies the implementation of such a pipeline. All pipeline stages are
executed in parallel enabling on-the-fly-reconstructions in real-time.

The processing elements of the Cell processor are utilized by dispatching the asso-
ciated parallel processing of a pipeline stage to a configurable number of SPEs. The
PPE acts as the dispatcher which divides the processing of the considered pipeline
stage into smaller tasks and assigns them to the available processing units. To min-
imize the control overhead we assign rather large tasks to the processing elements
that further have to be divided into smaller tasks by the processing elements them-
selves. We take special care to hide any communication latencies via double buffering
techniques during the dispatching and computation process.

The only downside of our approach is that similar to our FDK implementation the
mapping of the available SPEs onto the pipeline stages is currently done statically.
This means that we have to decide up front how many SPEs shall be used in each
pipeline stage before program execution. Assigning each filtering step (F1 to F6)
to a separate pipeline stage and thus to at least one SPE would result in a poor
utilization of the SPEs only, which is a waste of computation resources. Technically,
we compiled all filtering steps into one pipeline stage and one associated SPE program
in order to circumvent this problem. The dispatching PPE identifies each filtering
task via a special tag such that a filtering SPE can easily decide which processing task
should be executed. Fortunately, together with necessary data buffers the complete
SPE program fits into the Local Store, if temporary data buffers are shared among
the different filtering task implementations. The PPE-side dispatching facility of the
filtering pipeline stage takes care of synchronization and load-balancing between the
individual filtering steps. Because of Local Store size restrictions, the filtering and
back-projection tasks, however, had to be separated into two different pipeline stages
and thus also into two different SPE programs.

An efficient implementation on the CBEA further requires to choose a proper
parallelization strategy for each part of the algorithm that can deal with the limited
Local Store size.
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Figure 8.1: Implementation approach of forward rebinning. The colored box of the
rebinned filtering lines (left) corresponds to the bold filtering lines in the colored box
of the projection (right). It is only required to rebin filtering lines going through the
back-projection region (see F6 for a definition).

F1 and F2 - Derivative and Cosine Weighting. The derivative computation is
implemented in a row-based manner. Several rows of the resulting derived projection
are assigned to an SPE at the same time. The SPE itself transfers the required rows
of each involved projection (our current approximation of the derivative requires the
considered projection together with the previous and next projection) to its Local
Store, before performing the actual computations. Because the required computations
for the derivative and the cosine weighting share a common factor we could easily
combine the involved computations in order to achieve more efficiency.

F3 - Forward Rebinning. The rebinning computations could not be implemented
in a line-based manner due to the limited size of the Local Store. An efficient par-
allelization strategy must further take into account that optimal sizes for memory
transfers on the Cell processor are multiples of 128 bytes (32 single precision floating
point values). We therefore decided to partition the rebinned image into blocks of
32× 32 values. For each block the corresponding maximum shadow in the projection
image is obtained by applying the rebinning equation to the four border values of a
block (see Figure 8.1). Then we clip the resulting shadow with the detector boundary
and transfer the associated data from main memory to the Local Store. After that
the rebinning computations can be applied on the chosen partition and the resulting
values can be transferred back to main memory. In order to avoid communication
overhead we let the dispatching PPE assign several blocks to one SPE at the same
time. The results are saved to a temporary buffer allocated in main memory.

F4 - Hilbert Filtering. The Hilbert filtering is implemented similar to the filtering
step in the Feldkamp algorithm (see Section 4.2.1). The DFT of the spatial Hilbert
kernel, however, does only have imaginary parts while the DFT of the spatial Ramp
filter kernel, which is used in the FDK method, has only real parts. This required to
slightly adapt the multiplication step in the frequency domain.
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F5 - Backward Rebinning. The backward rebinning step is implemented using
the parallelization strategy of the forward rebinning step, in reversed order.

F6 - π-Line Weighting. For each projection the associated π-line weighting mask
m(λ, u, v) has to be initialized, e.g. by loading it from the hard disk. In our current
implementation we assumed that the hard disk is fast enough to load the mask images
without introducing any time delays. While most of the mask values have the same
value (1 or 0), a very simple compression scheme, e.g. based on run-length encoding
would easily accelerate the hard disk transfers in a sufficient manner. The π-line
weighting step itself is easily parallelized because it is nothing else than an element-
wise multiplication of two 2D arrays.

Step 2 - Back-Projection. In our implementation of the back-projection for the
FDK reconstruction method we were able to avoid detector boundary checks by re-
stricting the processing only to volume voxels that are inside the FOV, thus always
projecting onto the detector within its boundary. In order to account for that during
the back-projection processing of the arc segments as well, we added detector bound-
ary checks, because on the arc segments even voxels within the FOV may project to
the outside of the detector.

8.1.2 Results

We evaluated the performance of our implementation using the same Cell-based Blade
server board as we used in the evaluation of the FDK implementation. The board
comprises two Cell processors running at 3.2 GHz each as well as 1 GB of main
memory split across the two chips. The execution time of our M-line implementation
was measured using a dataset consisting of 600 projection images of 1024 × 1024
pixels each. The number of projection images were 500 on the short-scan circle,
50 on the upper arc segment and also 50 on the lower arc segment. The average
number of filtering lines per projection image was 1071. To achieve computation
times that are not affected by FOV handling strategies we back-projected the cone-
beam projections under consideration into a volume that fitted completely inside the
FOV. Therefore, we used a volume consisting of 512×512×352 voxels with a voxel size
of 0.313 mm3. During our measurements we removed any outliers by taking only the
best runtime out of five measurements. After the correctness of the implementation
was verified, we performed the measurements without doing the I/O transfers for
loading the projection and mask images from the hard disk or over the network. This
was necessary in order to achieve runtime measurements that were not affected by
I/O bandwidth limitations of our current Cell Blade evaluation system.

In order to measure the execution times of each filtering step separately, we in-
strumented our code with SPE decrementer statements (performance counter on SPE
side). Table 8.1 lists the execution time for filtering all 600 acquired projection images
of the complete acquisition using one SPE. We took special care to avoid the influence
from any other workload. The Hilbert filtering accounts for more than 33 % of the
overall filtering computations. Compared to the filtering of our Cell-based FDK im-
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Processing task Time [s] Percentage [%]

Derivative/Cosine Weighting 6.40 21.5
Forward rebinning 6.64 22.3
Hilbert Filtering 10.00 33.7

Backward rebinning 5.88 19.8
π-weighting 0.79 2.7

Total 29.71 100.00

Table 8.1: Performance results of all filtering stages within the M-line approach using
one SPE.

Number of SPEs (filtering/back-projection)
using one Cell processor using two Cell processors

1/7 2/6 3/5 1/15 2/14 3/13 4/12

M-line (short-scan circle plus two arc segments)
Time [s] 33.25 30.05 35.24 31.20 17.38 14.64 15.61

pps 18.05 20.00 17.03 19.23 34.52 40.98 38.44
fps 10.59 11.71 9.99 11.28 20.25 24.04 22.55

FDK (short-scan circle only)
Time [s] 19.80 22.99 27.52 9.43 10.07 10.81

pps 25.15 21.66 18.10 52.81 49.45 46.07
fps 17.78 15.31 12.79 37.33 34.96 32.56

Table 8.2: Overall pipelined execution of the filtering and back-projection for the
M-line method and the FDK method.

plementation (see Section 4.2) the computing time of filtering1 increases by a factor
of 3.5 in the exact approach. Due to the random memory accesses during forward and
backward rebinning, the corresponding computations are the most expensive ones.
Usually there are more filtering lines than rows in the projection images. Because of
this reason the forward rebinning accounts for more processing time in comparison
to the backward rebinning,

During the validation of the performance of the overall pipeline execution (simul-
taneous, parallel execution of filtering and back-projection in a pipeline) we used the
”gettimeofday” function on the PPE. This ensures that all overhead during program
execution (e.g., starting the SPE threads) are included in the measurements.

Table 8.2 shows the achieved results for various configurations of used SPEs for fil-
tering and back-projection, respectively. For comparison purposes we also computed
FDK reconstructions with the same SPE configuration using only the projection
images from the short-scan circle. We also give the numbers of projection images
that can be processed per second (pps). This number is important because on-the-
fly-reconstruction can only be achieved when the reconstruction system is able to
process at least the same number of projections per second than the scanning de-

1This includes all M-line filtering steps F1 to F6.
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vice can deliver. Recent C-arm devices achieve rates of 30 pps for 1k images. For
convenience, we also calculated the number of 512 × 512 image slices, that can be
reconstructed in one second (frames per second, fps) as this number is often used in
research for comparison purposes. One can see that, in contrast to the FDK method,
the reconstruction speed of the M-line method is limited by the processing time of
the SPEs used for the filtering pipeline stage. Using only one Cell processor of our
dual Cell Blade two filtering SPEs and using both Cell processors even three filtering
SPEs are required in order to achieve optimal performance. Otherwise the execu-
tion time is limited either by the filtering performance or by the back-projection
performance. The back-projection performance is roughly comparable to the one
used in the FDK implementation. Both reconstruction approaches, however, achieve
on-the-fly-reconstruction using two Cell processors.

8.2 Iterative Reconstruction

In Section 6 we focused on an efficient GPU implementation of the Feldkamp algo-
rithm. The most time-consuming part of that method is the back-projection step.
As described in Section 2.3.2 iterative reconstruction algorithms require another very
compute-intensive processing step additionally to the back-projection: the forward-
projection through the voxel-volume.

In the following we present an efficient GPU implementation of forward-projection
based on ray casting. Ray casting is a well-known method in volume rendering
and it can be efficiently implemented by using the texture hardware of modern
GPUs [Enge 06].

First, we explain the basic structure of ray casting. We further describe all im-
portant details of an efficient GPU-based implementation of ray casting and evalu-
ate its performance. Finally we estimate the achievable computational performance
of SART using GPUs based on our performance evaluation of back-projection and
forward-projection.

8.2.1 Basic Structure of Ray Casting

The basic idea of ray casting is to directly evaluate the line integrals of the object
density function according to Equation (2.1) along rays that are traversed from the
position of the X-ray camera to the detector plane. Neglecting possible supersampling
on the detector plane for each sample position on the detector a single ray is cast into
the volume. Then the volume data is resampled at discrete positions along the ray.
Figure 8.2 illustrates the principle of ray casting. Algorithm 7 details the algorithmic
steps, which are executed during each forward-projection step.

Accordingly, forward-projection based on ray casting can be split into the following
components:

Ray Initialization. For each pixel position (ǔ, v̌)T on the detector plane of the
considered projection this component sets up a ray, which emerges from the
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Figure 8.2: Ray casting principle. For each detector element one ray is traced. The
ray is sampled at discrete positions in the volume to evaluate the line integrals. The
sampling interval on the ray is denoted by Δt. The X-ray source position is indicated
by ǎ(λ) expressed in voxel coordinates.

corresponding source position ǎ(λ) = (ǎx, ǎy, ǎz)
T of the X-ray camera2. We

use a parametric representation of the ray. The ray is therefore defined by

x̌ = (x̌, y̌, ž)T = ǎ(λ) + tθ̌(ǔ, v̌) , (8.1)

where t ∈ R is a parameter indicating the extent of the ray from ǎ(λ) and
θ̌(ǔ, v̌) = (θ̌x, θ̌y, θ̌z)

T specifies the direction of the ray. The vectors x̌, ǎ(λ),
and θ̌(ǔ, v̌) are expressed in voxel coordinates and the vector (ǔ, v̌)T is expressed
in pixel coordinates.

Let P̌(λ) be the corresponding projection matrix, which projects a point ex-
pressed in voxel coordinates to a detector position expressed in pixel coordi-

2 In the case of an ideal circular acquisition the source position a(λ) (in world coordinates) at
rotation angle λ is defined by Equation (2.3).
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Algorithm 7: Pseudo-code for forward-projection based on ray cast-
ing.

Input: projection matrix P̌
Input: step size Δt along ray
Input: volume data V̌
Result: projection Ǐ

Extract source position from P̌;1

foreach ray (ǔ, v̌)T of projection Ǐ do2

Ǐ[ǔ, v̌] = 0;3

Extract ray direction from P̌;4

Compute volume entry and exit position;5

while ray position in volume do6

Access data value at current position from V̌;7

Multiply data value with the step size Δt and accumulate it8

to Ǐ[ǔ, v̌];
Advance position along ray according to step size Δt;9

end10

Rescale Ǐ[ǔ, v̌] to world coordinate system units;11

end12

nates3. Then the source position vector ǎ(λ) (in voxel coordinates) is given
by [Gali 03]

ǎ(λ) = −P̌(λ)[:, 0 : 2]−1P̌(λ)[:, 3] , (8.2)

where P̌(λ)[:, 0 : 2] refers to the matrix containing the first three columns of
P̌(λ) and P̌(λ)[:, 3] represents the fourth column of P̌(λ). It is also possible
to determine the direction θ̌(ǔ, v̌) without an explicit knowledge of the three-
dimensional coordinates of the detector pixel (ǔ, v̌)T . The resulting direction
vector is given by [Gali 03]

θ̌(ǔ, v̌) = −P̌(λ)[:, 0 : 2]−1(ǔ, v̌, 1)T . (8.3)

In the following we assume that the ray direction has been normalized according
to ||θ̌(ǔ, v̌)||2 = 1.

The ray set up further includes the computation of the volume entry and exit
position defined as the first and last intersection of the ray with the bounding
geometry of the volume dataset.

Traversal Loop. In order to evaluate the line integral the main component traverses
along the ray and samples it at discrete positions. The traversal loop then
scans the ray at these positions. In each iteration of the loop the following
subcomponents are executed.

3In the case of an ideal circular acquisition the projection matrix P̌(λ) at rotation angle λ is
given by Equation (2.16).
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Data Access. The volume dataset is accessed at the current ray position and
the corresponding value is interpolated from the discrete volume data using
for example trilinear interpolation. Finally, the resulting value is accumu-
lated to the current line integral value of that ray.

Advance Ray Position. The current ray position is advanced to the next
sampling position along the ray. Rays are sampled uniformly. Therefore
the next sampling position is defined by

x̌ = ǎ(λ) + (t + Δt)θ̌(ǔ, v̌) , (8.4)

where Δt defines the step size and t determines the current ray position.

Ray Termination. This subcomponent exits the traversal loop when the ray
leaves the volume.

Rescale ray sum. Ray casting as described above approximates the forward-projection
that is given by the term

J−1∑
j=0

amj,nx̂
k+1,n−1
j (8.5)

of Equation (2.51). Here, the matrix entries amj,n are expressed in units of
the world coordinate system. The computations of the traversal loop, however,
have been done in voxel coordinates. It is therefore necessary to rescale the
computed ray sum to world coordinates.

In order to rescale the ray sum we first express the direction vector θ̌(ǔ, v̌) =
(θ̌x, θ̌y, θ̌z)

T of Equation (8.1) with respect to the world coordinate system:

θ(u, v) =

⎛
⎝ θx(u, v)

θy(u, v)
θz(u, v)

⎞
⎠ =

⎛
⎝ dx 0 0

0 dy 0
0 0 dz

⎞
⎠ · θ̌(ǔ, v̌) =

⎛
⎝ dx · θ̌x(ǔ, v̌)

dy · θ̌y(ǔ, v̌)
dz · θ̌z(ǔ, v̌)

⎞
⎠ .

(8.6)
The computed ray sum thus has to be rescaled by multiplying it with the factor

nf =
||θ(u, v)||2
||θ̌(ǔ, v̌)||2

(8.7)

=

√
(dx · θ̌x(ǔ, v̌))2 + (dy · θ̌y(ǔ, v̌))2 + (dz · θ̌z(ǔ, v̌))2 . (8.8)

Note that θ̌(ǔ, v̌) has been normalized during ray set-up and thus ||θ̌(ǔ, v̌)||2 = 1.

The following section describes how the different components of ray casting as
described above can be implemented on GPUs using CUDA.

8.2.2 Implementation of Ray Casting

During ray casting the rays can be processed independently of each other. This par-
allelism is compatible with hardware parallelism in GPUs: the operations of a single
ray are associated with a single thread of the kernel program, which is responsible
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ěx

ěx
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Figure 8.3: Detailed look at the ray casting implementation. Here, one ray is given
by the source position ǎ(λ) and the direction vector θ̌(ǔ, v̌) pointing to the detector
element (ǔ, v̌)T .

to compute the line integrals of a projection. Additionally, the volume data is stored
in a three-dimensional texture object, and is thus accessed with the high internal
memory bandwidth of a GPU and hardware-accelerated trilinear interpolation.

The computations during the processing of a ray are performed with respect to
the voxel coordinate system (VCS). The VCS is a right-handed coordinate system, it
is aligned to the center of voxel (0, 0, 0)T and the voxel size is normalized to 1 in each
direction (see Figure 8.3). Textures in CUDA4, however, are defined with respect to
a different coordinate system that is aligned to the boundary of the volume. In the
following we refer to this coordinate system as the texture coordinate system (TCS).

4 We only use unnormalized textures in CUDA. Unnormalized textures are referenced using
floating-point coordinates in the range [0, N) where N is the size of the texture in the dimension
corresponding to the coordinate. For example, a texture that is 64 × 32 in size will be referenced
with coordinates in the range [0, 63] and [0, 31] for the first and second dimension, respectively.
See [NVID09] for more details.
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The following transform comprises the necessary translation of homogeneous texture
coordinates to the VCS:

TTCS =

⎡
⎢⎢⎣

1 0 0 −0.5
0 1 0 −0.5
0 0 1 −0.5
0 0 0 1

⎤
⎥⎥⎦ (8.9)

Furthermore, boundary accesses to the texture have to be treated specially in
order to compute an accurate ray sum at the border of the volume. For example
the ray sum is not computed correctly for the last two sampling points on the ray
in Figure 8.3. The texture coordinates are simply clamped5 to the border of the
texture and the wrong points are sampled. In order to ensure a correct sampling at
the border of the volume we enlarge the texture by adding border voxels (exterior
voxels) around the texture and initializing them with the value 0. Otherwise texture
accesses at the border region would be clamped to the wrong volume location. The
enhanced texture defines another coordinate system: the extended texture coordinate
system (ECS). The following transform comprises the translation of enhanced texture
coordinates in homogeneous representation to the coordinates of the TCS:

TECS =

⎡
⎢⎢⎣

1 0 0 −1.0
0 1 0 −1.0
0 0 1 −1.0
0 0 0 1

⎤
⎥⎥⎦ (8.10)

In order to compute all processing steps of the ray casting algorithm within
the ECS each projection matrix P̌(λ) is modified during ray initialization accord-
ing to

P̌(λ) ·TTCS ·TECS (8.11)

before kernel execution. This approach improves the efficiency of our implementation
because all computations regarding the correct handling of the coordinate systems
are moved out of the traversal loop.

We further compute P̌(λ)[:, 0 : 2]−1 and ǎ(λ) and copy their corresponding entries
to constant device memory. Then the ray casting kernel is started launching a single
thread for each sample position on the detector. It facilitates all components men-
tioned in the previous section: the remaining steps of ray initialization (computation
of ray direction, entry, and exit position), ray traversal, data access, ray termination,
and ray normalization.

5 Textures in CUDA can be accessed using different addressing modes.The addressing mode
defines what happens when texture coordinates are out of range. In CUDA version 2.3 only the
”clamped” addressing mode is available for unnormalized textures: Let N be the size of the texture
in the dimension corresponding to the considered coordinate. Coordinates that are outside the range
[0, N) are clamped. Values below 0 are set to 0 and values greater or equal to N are set to N − 1.
See [NVID09] for more details.
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In order to compute the entry and exit positions we follow the approach in [Sidd 85].
First, Equation (8.4) is solved for t and all parameter values of t are computed where
the ray intersects with one of the sides of the volume cube6:

tx0 =
1− ǎx

θ̌x
, tx1 =

(Nx + 1)− ǎx

θ̌x
,

ty0 =
1− ǎy

θ̌y
, ty1 =

(Ny + 1)− ǎy

θ̌y
,

tz0 =
1− ǎz

θ̌z
, tz1 =

(Nz + 1)− ǎz

θ̌z
.

(8.12)

Here, the number of voxels in the volume (excluding the exterior voxels) is given by
Nx ×Ny ×Nz.

If the denominator is zero in one of these equations, then the ray is parallel to
the volume side under consideration and the result is undefined. In such a case we
simply exclude the corresponding equation from the following computations.

In terms of the parametric values given by Equation (8.12) the entry and exit
positions tmin and tmax, respectively, are computed by

tmin = max (min(tx0, tx1),min(ty0, ty1),min(tz0, tz1)) , (8.13)
tmax = min (max(tx0, tx1),max(ty0, ty1),max(tz0, tz1)) , (8.14)

where the functions ”min” and ”max” select the minimum and maximum value of
their argument list, respectively. The ray does only intersect the volume cube if tmin

is less than tmax. Figure 8.3 illustrates the computed values for a single ray, where
the final values of tmin and tmax are given by tx0 and ty1, respectively.

The traversal loop then computes the normalized ray sum according to Algo-
rithm 8. The CUDA-function ”tex3D” accesses a texture at the specified coordinates.
The texture has been configured to use trilinear interpolation. The last sample po-
sition may be already outside of the volume cube but it must be treated specially
in order to add to the ray sum also the remaining fraction of Δt for that sample
position.

In volume rendering applications the performance of ray casting can be improved
by additional acceleration methods. For example, early ray termination, adaptive
sampling, and empty-space skipping can be used to significantly improve the render-
ing performance [Enge 06]. It is, however, very problematic to apply these acceleration
techniques in the context of iterative cone-beam reconstruction. In this domain, the
line integrals have to be computed as accurately as possible. Moreover, the attenu-
ation coefficients are updated frequently, which does not justify to apply expensive
volume preprocessing methods during the reconstruction process.

8.2.3 Results

In order to evaluate the ray casting performance of our GPU implementation, we
used again the same workstation (Intel Xeon Quad-core processor (E5440) running

6The volume cube consists only of the interior voxels (see Figure 8.3).
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Algorithm 8: Pseudo-code of the traversal loop in the kernel pro-
gram of ray casting.

Input: pixel position (ǔ, v̌)T

Input: step size Δt along ray
Input: source position ǎ = (ǎx, ǎy, ǎz)

T

Input: ray direction θ̌ = (θ̌x, θ̌y, θ̌z)
T

Input: entry position tmin and exit position tmax

Input: normalization factor nf
Input: volume texture V̌
Result: projection Ǐ

float t = tmin;1

float val = 0.0f ;2

// traversal loop
while (t < tmax) do3

float x̌ = ǎx + t · θ̌x;4

float y̌ = ǎy + t · θ̌y;5

float ž = ǎz + t · θ̌z;6

val = val + tex3D(V̌, x̌, y̌, ž);7

t = t + Δt;8

end9

// ray normalization
val = val · nf ;10

// handle last sample point
if ((t− Δt

2
) < tmax) then11

float x̌ = ǎx + t · θ̌x;12

float y̌ = ǎy + t · θ̌y;13

float ž = ǎz + t · θ̌z;14

val = val + (t− Δt
2
) · nf

Δt
· tex3D(V̌, x̌, y̌, ž);15

end16

// save result
Ǐ[ǔ, v̌] = val;17
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Figure 8.4: Ray casting performance for different grid configurations. The number
of forward-projections that can be processed per second (pps) are given. During ray
casting a step size of 1.0 of the voxel size has been used.

at 2.83 GHz) and installed the Tesla C1060 accelerator from Nvidia. We computed
forward-projections of the two real datasets that have already been used during the
evaluation of the FDK method (see Appendix B for a detailed description of the
datasets). For both datasets we used a volume that was reconstructed using the
FDK method. The volume had a size of 5123 voxels. The voxel size was chosen
such that the complete FOV fits into the volume. It was configured to 0.38 mm for
Dataset (a) and 0.46 mm for Dataset (b).

In order to load the volume into the 3-D texture array 0.26 seconds are required.
The ray casting kernel compiled to 12 registers, which results in the maximum possible
warp occupancy that is available on the used Tesla device. The shared memory usage
did not limit the warp occupancy either.

In order to further tune the performance we executed the ray casting processing
with different grid configurations. Figure 8.4 shows the results. It can be seen that it
is important to improve data locality during the ray traversal loop. We observed the
best performance using a grid configuration with a block size of 16× 16 pixels. The
geometry of the dataset also influences the access pattern during the ray traversal
loop. Therefore, the curves in Figure 8.4 corresponding to the two datasets slightly
vary from each other. In the following we kept the grid configuration fixed and used
a block size of 16× 16 pixels.

We further examined the influence of the step size on the performance of ray
casting by executing our ray casting kernel with different step sizes. Table 8.3 shows
the results for the two considered datasets. For Dataset (a) all 414 projections have
been forward-projected and for Dataset (b) all 543 projections have been forward-
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Stepsize [voxel units] 0.10 0.25 0.50 0.75 1.00

Dataset (a)
Time [s] 212.25 86.62 44.45 30.03 23.03

pps 1.95 4.78 9.31 13.79 17.98

Dataset (b)
Time [s] 282.54 113.38 57.18 38.38 29.08

pps 1.92 4.79 9.50 14.15 18.67

Table 8.3: GPU performance results of ray casting for the considered datasets using
different step sizes.

Dataset (a) Dataset (b)
Processing Step Time [s] pps Time [s] pps

Back-Projection 10.25 40.39 15.16 35.82
Forward-Projection 23.03 17.98 29.08 18.64
Texture Updates 38.83 10.66 50.93 10.66

One SART Iteration >72.11 <5.74 >95.17 <5.71

Table 8.4: GPU performance results of the computationally most demanding pro-
cessing steps of SART. All processing steps are executed on a Tesla C1060 device
from Nvidia. The results are given for a single iteration. The step size during ray
casting was 1.0.

projected. The volume texture was loaded only once and the projection results were
not transferred to the host. As expected the achieved processing times nearly scale
linearly with the configured step size. While smaller step sizes may improve the
image quality of the overall reconstruction result, the computational performance is
severely limited.

The forward-projection at a step size of 1.0 accounts for roughly twice as much
processing time compared to the back-projection processing (see Table 8.4). Back-
projection takes longer compared to the measurements in Section 6.3 because the
increased voxel size causes more texture cache misses.

Using CUDA Version 2.3 it is not yet possible to share the volume memory be-
tween back-projection and forward-projection. The back-projection is implemented
using global memory, which is linearly allocated, while the forward-projection ac-
cesses the volume memory via a 3-D texture. 3-D textures use a proprietary data
layout that is optimized for access locality. It is thus required to allocate twice as
much memory for the volume and after the back-projection of each projection image
the 3-D texture has to be updated. Transferring the volume to the 3-D texture takes
0.1 seconds. It can be seen in Table 8.4 that the texture update dominates the over-
all execution time of SART. In contrast, SIRT updates the texture only once in each
iteration. Likewise, the texture update time can be reduced by applying an ordered
subset approach.

Ray casting is, however, not the only approach in order to compute the forward-
projection step. Indeed, several different ways have been introduced in the literature.



www.manaraa.com

112 Chapter 8. Performance Optimization of Selected Feldkamp Alternatives

A detailed comparison can be found in [Xu 06]. Due to the expensive texture updates,
it might be beneficial to implement the forward-projection step using the Joseph
method [Jose 83], which requires only 2-D texture accesses.

At the same time the volume could be saved to a pitched linear 2-D texture repre-
sentation, which allows to share the memory of the volume with the back-projection.
From a computational point of view this completely avoids the texture updates. Un-
fortunately, at the time we implemented the ray casting algorithm pitched linear
textures was not available in CUDA.

8.3 Summary
We have developed a parallelized and highly optimized implementation of two alter-
native reconstruction approaches to the Feldkamp algorithm.

In particular, using the CBEA we have evaluated the computational performance
of the M-line method, which is a representative of a theoretically exact and stable
cone-beam reconstruction algorithm. In this regard, we have shown that the execution
time of filtering increases only by a factor of 3.5 compared to the FDK method.
We have demonstrated that with our dual Cell Blade an M-line reconstruction for
a standard clinical scenario can be computed in 14.64 seconds (40.98 pps) using a
short-scan circle plus two arcs acquisition. This leverages high quality cone-beam CT
reconstructions on-the-fly, which means that all required computations are hidden
behind the scan-time of the used X-ray device.

Finally, we have presented an efficient implementation of the computationally
most demanding steps in iterative reconstruction algorithms on off-the-shelf graphics
boards. Because the back-projection step can be implemented similar to the FDK
method we have especially considered the forward-projection step. Our implementa-
tion is based on a ray casting algorithm in order to make efficient use of the texture
hardware in current graphics accelerators. Using a reasonable parameter configura-
tion the forward-projection step requires roughly twice as much processing time as
the back-projection step. However, the necessary texture updates of the voxel vol-
ume between back-projection and forward-projection has been shown to be a huge
bottleneck, which can only be reduced by applying an ordered subset approach or
SIRT like iterative algorithms.
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Conclusions

This chapter summarizes the main contributions and results of this work and de-
scribes future directions for research in the field of hardware-accelerated cone-beam
CT reconstruction.

9.1 Summary

We have presented both the design and the implementation of a software architecture
that is well suited to implement and accelerate the computationally intensive task of
3-D reconstruction in CT imaging. Software engineering techniques play an important
role in the overall design and can improve the efficiency, flexibility, and portability of
the whole reconstruction system.

In this regard, the parallel reconstruction algorithms can be mapped to a design
approach that combines the pipeline design pattern with the master/worker design
pattern. We have illustrated how the design can act as a hardware abstraction layer
on top of different acceleration architectures. It even allows to combine the use
of several acceleration hardware platforms for different parts of the algorithm in a
heterogeneous environment.

In order to evaluate the suitability of four different state-of-the-art hardware ar-
chitectures for their usage in cone-beam CT reconstruction we have implemented
highly optimized versions of the FDK method for each of these hardware architec-
tures. Furthermore, we have evaluated their reconstruction performance using two
medical datasets that were acquired using a standard C-arm device.

It is difficult – if not impossible – to objectively compare the reconstruction speed
of different hardware architectures as long as not the same precondition is fulfilled.
Linear scaling and comparison of published results may lead to wrong conclusions
concerning the achievable reconstruction speed due to the use of different hardware,
different datasets, different reconstruction parameters, and due to many implementa-
tions that assume an ideal geometric acquisition, which is unfortunately not the case
in most practical cone-beam CT scanners.

Table 9.1 shows a comparison of the achievable reconstruction speed for the FDK
method using the hardware architectures that have been discussed in this thesis. All
measurements have been done using the same reconstruction parameters and using
the same two medical datasets. In order that an FDK reconstruction can be computed

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
Cone-Beam CT Reconstruction, DOI 10.1007/978-3-8348-8259-2_9, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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Hardware Filtering Back-Projection Overall
[s] pps [s] pps [s] pps

Dataset (a), convolution length 2048

CPU (Intel quad-core, 2.3 GHz) 3.5 118.8 138.0 3.0 140.0 3.0
Cell processor (8 SPEs, 3.2 GHz) 0.8 503.0 21.0 19.7 24.0 17.2

GPU (Nvidia Tesla C1060) 1.3 309.0 5.2 79.3 7.3 57.1
FPGA (ImageProX) 3.9 107.3 11.2 36.9

Dataset (b), convolution length 4096

CPU (Intel quad-core, 2.3 GHz) 5.6 97.9 182.0 3.0 186.0 2.9
Cell processor (8 SPEs, 3.2 GHz) 1.9 287.5 27.7 19.6 31.9 17.0

GPU (Nvidia Tesla C1060) 3.5 156.5 8.2 66.1 12.6 43.1
FPGA (ImageProX) 4.4 124.5 15.0 36.3

Table 9.1: Reconstruction performance results of the FDK method (filtering and
back-projection) for all hardware alternatives under consideration.

on-the-fly using a current practical cone-beam CT scanner, at least 30 projections
per second must be processed. It can be seen from Table 9.1 that current GPU
devices are ideal candidates when reconstructions shall be computed on-the-fly while
projection data is being acquired.

An on-the-fly reconstruction can also be achieved when using two Cell processors.
It is, however, difficult to find commercial solutions that offer two Cell processors
on a single mainboard. As far as we know, currently only Cell Blades exist on the
market that provide two Cell processors acting as an SMP1 machine.

Using the ImageProX FPGA board it is only possible to upload and filter the
projection images on-the-fly, since our implementation requires all projection im-
ages in order to compute the back-projection result. However, the back-projection
computation using the ImageProX accelerator is as fast that it takes less than five
seconds to back-project each of the datasets that are given in Table 9.1. Compared
to the other considered hardware architectures the ImageProX accelerator delivers
the fastest back-projection performance.

On the other hand, it is nearly impossible to build systems that are able to ac-
complish on-the-fly reconstructions using only a few cores of current general-purpose
processors (e.g., Intel- or AMD-based). Their reconstruction performance is far away
from the speed that is exhibited by the more specialized architectures under consid-
eration. The achieved results demonstrate that a performance increase of an order of
magnitude and even more is achievable compared to recent high performance general-
purpose computing platforms (see again Table 9.1).

High-end graphics accelerators currently deliver the fastest overall reconstruction
speeds. The processing power of high-end GPU devices delivers the compute power
to process more than 40 projections per second. Concerning real-time imaging, the
achieved performance of the FDK method thus shows that there are still compu-

1 Symmetric Multiprocessing (SMP)
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tational resources available to compute further preprocessing tasks such as beam
hardening correction, truncation correction, or scatter correction, for instance.

While implementation complexity typically tends to be comparatively low for
CPU-based systems, highly optimized CPU implementations are getting as compli-
cated as implementations for more specialized architectures. This is especially true
for Cell processor based systems and FPGA accelerators. According to our experi-
ence, GPU systems provide a reasonable balance between implementation effort and
achievable reconstruction speed.

A downside of the GPUs is their co-processor based architecture. A correspond-
ing CPU core has to be present in order to control and to synchronize the GPU
calculations. We observed high load on the CPU during GPU computations indi-
cating that synchronization is presently still being accomplished using busy-waiting
loops. In a quad-core Intel system, we could only compute on seven hyper-threads
without affecting the GPU reconstruction speed significantly. Since we have not used
the asynchronous API2 functions and the streaming programming interface of CUDA
yet, we expect that it will be possible to reduce the load on the host system that is
caused by GPU calculations. The use of this programming API will further enable to
hide the time needed for data uploads to the GPU behind actual GPU computations,
which will improve reconstruction speed even more.

Although many CT systems use the FDK method to solve the 3-D image recon-
struction task, it is not without its short-comings. Therefore, we have described two
alternative approaches: the theoretically exact and stable M-line method applied to
a short-scan circle-plus-arc acquisition and the simultaneous algebraic reconstruction
technique as a representative of the iterative approaches. While a thorough eval-
uation on several hardware platforms has been out of scope of this thesis, each of
these techniques has been evaluated on an acceleration device that is – in our opinion
– particularly well suited for a high performance implementation of the respective
algorithm.

The M-line method totally resolves the problem of cone artifacts, which result
from the approximative nature of the state-of-the-art FDK method. Therefore, small
object details may be covered complicating their distinction. At the same time, the
M-line method can be implemented in the efficient FBP framework. We presented
a performance optimized implementation of the M-line method on the CBEA for
a circular short-scan plus arc acquisition. Our implementation further respects the
non-ideal acquisition geometry of practical C-arm systems. Compared to the FDK
method the computing time of the filtering steps of the M-line method increased by
a factor of three. Using two Cell processors the CBEA still offered enough computa-
tional resources to compute the reconstruction on-the-fly, but an additional SPE was
necessary for the computations of the filtering steps.

Iterative reconstruction methods provide an entirely different way to solve the
CT reconstruction task and, in certain situations, they achieve a better image quality
compared to that of the FDK method or even the M-line method. For example this
is the case when a sufficiently large number of projections is not feasible or simply
not desired to measure. Iterative approaches have also the opportunity to achieve
better image quality when the projections are not uniformly distributed over the scan

2 Application programming interface (API)



www.manaraa.com

116 Chapter 9. Conclusions

trajectory. The two computationally most expensive steps are the back-projection
and the forward-projection. We have examined an optimized implementation of both
steps on a high-performance GPU device. The implementation of the back-projection
step has been done in the FDK method. For the forward-projection step we used a ray
casting algorithm, which can be ideally mapped to the texture hardware of current
GPUs. The forward-projection accounts at least for twice as much processing time as
the back-projection. Using the GPUs as acceleration hardware it becomes feasible to
use iterative methods for certain applications in practical cone-beam reconstruction
devices but still at the cost of highly increased computation times.

We conclude that especially in flat-panel cone-beam CT (e.g., C-arm devices)
the Cell chip, graphics boards, and FPGA-based platforms represent very promising
computing architectures. In particular, both the Cell processor and GPU hardware
provide the possibility to be programmed rather elegantly in a high level programming
language. This feature can significantly contribute to reduce the innovation cycles of
the reconstruction system in practical scanning devices.

9.2 Future Work
Although we provided a comprehensive overview of the field of hardware-accelerated
cone-beam CT reconstruction there are some topics that have not been evaluated in
this thesis but are worth being investigated in the future. In the following we will
discuss the most promising topics.

There are other computing platforms that have not been considered in this thesis.
Intel, for example, is doing research on a hybrid between a multi-core CPU and a
GPU. Its codename was Larrabee. Like CPUs the Larrabee chip has a coherent cache
hierarchy and is compatible to the x86 architecture. But it has also GPU-like features
such as its wide SIMD vector units and its texture sampling hardware.

In this thesis we considered only graphics cards from Nvidia. Other GPUs, e.g.
from AMD/ATI, could be applied to cone-beam CT reconstruction as well. These
GPUs, however, do not support CUDA and thus have to be programmed in a different
way.

Recently, an open programming standard emerged for general purpose computing
on heterogeneous systems. It is called the Open Computing Language (OpenCL).
Several vendors already support OpenCL for their computing hardware. For example,
Nvidia, AMD/ATI, and IBM have already released an SDK enabling OpenCL for
some of their products. Although OpenCL unifies high-performance programming in
a single language it seems unlikely that a single OpenCL program is able to deliver
the best possible performance on different acceleration platforms.

We only looked at the most time-consuming parts of iterative reconstruction meth-
ods. The implementation of a specific iterative method may introduce additional
problems both concerning the efficient parallel implementation and the algorithmic
building blocks. For example, there are other choices for implementing the forward-
projection step than ray casting.

Finally, other reconstruction algorithms may be applied to solve the 3-D CT re-
construction task. For example, there are theoretically exact and stable methods
that can better deal with truncated projections. In this regard, differentiated back-
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projection filtration (DBF) approaches may be worth to be considered. Helical CT
reconstruction algorithms are another topic of research we have excluded from our
considerations. In several helical CT scanners cylindrical detectors are installed that
require a special treatment of that geometry.
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Geometry Parameter Extraction

For mechanically unstable cone-beam CT scanners the scan geometry slightly devi-
ates from that of an ideal scan. These deviations are often not negligible [Wies 00].
In order to achieve good image quality also for non-ideal acquisitions the imaging
geometry has to be defined accurately for each acquired projection image.

The imaging geometry for the X-ray camera at position a(λ) can be defined
by a 3 × 4 projection matrix for which the left hand 3 × 3 sub-matrix is non-
singular [Hart 03]. To extract the geometrical parameters from a projection ma-
trix P(λ) we need to decompose P(λ) into the following product

P(λ) = K(λ)
[
R(λ) −R(λ)a(λ)

]
, (A.1)

where the calibration matrix K(λ) is of the form

K(λ) =

⎡
⎣

D
du

s ǔ0
0 D

dv
v̌0

0 0 1

⎤
⎦ . (A.2)

The parameter s is referred to as the skew parameter. A non-zero value of s corre-
sponds to a sheared detector pixel grid.

The rotation matrix

R(λ) =
[
eu(λ) ev(λ) −ew(λ)

]T (A.3)

consists of the unit vectors that define the detector coordinate system. In order to
obtain K(λ), R(λ) and a(λ) from P(λ) we reformulate Equation (A.1) into

P(λ) =
[
M(λ) −M(λ)a(λ)

]
, (A.4)

where the matrix M(λ) = K(λ)R(λ) is the left hand 3× 3 sub-matrix of P(λ).1
Finally, the source position a(λ) is computed according to

a(λ) = −M−1P(λ)[:, 3] . (A.5)

The inversion of matrix M(λ) can be done in a numerically stable way e.g. by using
a singular value decomposition [Golu 96].

1 The matrixM(λ) can be decomposed asM(λ) = K(λ)R(λ) whereM(λ) is upper triangular and
R(λ) is orthogonal. This decomposition is essentially the RQ matrix decomposition (see [Hart 03]
for further details).

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
Cone-Beam CT Reconstruction, DOI 10.1007/978-3-8348-8259-2, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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Datasets

In this thesis the computational performance has been evaluated using two clinical
datasets acquired with C-arm systems.

The projection images have been preprocessed using the ”RenderDib” tool from
the AX department of Siemens Healthcare. The preprocessed images have been
written as raw float arrays to separate files. The relevant calibration information and
the description of the maximum volume of interest were available from a previous
calibration. In case of the Feldkamp algorithm we further applied cosine and Parker
weighting to the projection images.

In the following we briefly summarize the details of these datasets.

B.1 Dataset (a): Head
Dataset (a) consisted of 414 projection images of 1024 × 1024 pixels each. The
convolution length for the Fourier-based filtering step was 2048 including zero padding
for this dataset. In the back-projection step of the Feldkamp algorithm the isotropic
voxel size was set to 0.263 mm3 so that the whole volume was located inside the FOV.
During the evaluations of the iterative approach the volume contained the complete
FOV thus using a voxel size of 0.383 mm3. The reconstructed volume shows a human
head (see Figure B.1).

B.2 Dataset (b): Hip Junction
Dataset (b) consisted of 543 projection images of 1240 × 960 pixels each. During
the evaluations of the Feldkamp algorithm the convolution length was 4096 and the
isotropic voxel size 0.313 mm3. For the iterative approaches the volume was configured
with a voxel size of 0.463 mm3. The reconstructed volume shows a phantom of a
human hip (see Figure B.2).

H. Scherl, Evaluation of State-of-the-Art Hardware Architectures for Fast 
Cone-Beam CT Reconstruction, DOI 10.1007/978-3-8348-8259-2, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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(a) Projection image.

(b) Slice image. (c) VRT.

Figure B.1: Dataset (a) – Head. A single projection image of the dataset is shown (a).
The projection images of this dataset show a border of zero values around each
image. During reconstruction these borders have been assumed to contain image
information. In (b) a reconstructed slice image is shown. It has been scaled to its full
intensity range. The yellow circle indicates the FOV, while the white square indicates
the region, which has been reconstructed during the performance evaluations of the
FDK method. Finally, the image in (c) has been computed by a volume rendering
technique (VRT).
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(a) Projection image.

(b) Slice image. (c) VRT.

Figure B.2: Dataset (b) – Hip Junction. The images in (a) and (b) show a single
projection image of the dataset and a reconstructed slice image, respectively. Both
images have been scaled to their full intensity range. In (b) the yellow circle indicates
the FOV, while the white square indicates the region, which has been reconstructed
during the performance evaluations of the FDK method. Finally, the image in (c)
has been computed by a volume rendering technique (VRT).
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Appendix C

Acronyms

AMD Advanced Micro Devices
API Application Programming Interface
ART Algebraic Reconstruction Technique
BIC Bus Interface Controller
BL Bilinear
CBEA Cell Broadband Engine Architecture
CCS Camera Coordinate System
CPI Cycles Per Instruction
CPLD Complex Programmable Logic Devices
CPU Central Processing Unit
CT Computed Tomography
CUDA Compute Unified Device Architecture
CUFFT CUDA Fast Fourier Transform
DBF Differentiated Back-projection Filtration
DCS Detector Coordinate System
DDR Double Data Rate
DFT Discrete Fourier Transform
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
ECS Extended Texture Coordinate System
EIB Element Interconnect Bus
FDK Reconstruction method by Feldkamp, Davis, and Kress
FFT Fast Fourier Transform
FOV Field-Of-View
FPGA Field-Programmable Gate Arrays
fps frames per second
GPU Graphics Processing Unit
IBM International Business Machines Corporation
IDFT Inverse Discrete Fourier Transform
IFFT Inverse Fast Fourier Transform
ILP Instruction Level Parallelism
IO Input/Output
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126 Appendix C. Acronyms

IPP Integrated Performance Primitives
LME Lehrstuhl für Mustererkennung
LRR Lehrstuhl für Rechnertechnik und Rechnerorganisation
LS Local Store
M-line Theoretically exact and stable reconstruction method
MFC Memory Flow Controller
MIC Memory Interface Controller
MLEM Maximum Likelihood Expectation Maximization
NDT Non-Destructive Testing
NN Nearest Neighbor
OpenGL Open Graphics Library
OSEM Ordered Subset Expectation Maximization
PCI Peripheral Component Interconnect
PCS Pixel Coordinate System
PPE PowerPC Processor Element
pps projections per second
PPU Power Processor Unit
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RTK Reconstruction Toolkit
SART Simultaneous Algebraic Reconstruction Technique
SDK Software Development Kit
SDRAM Synchronous Dynamic Random Access Memory
SIMD Single Instruction, Multiple Data
SIRT Simultaneous Iterative Reconstruction Technique
SMP Symmetric Multiprocessing
SPE Synergistic Processor Element
SPU Synergistic Processor Unit
SSE Streaming SIMD Extensions
TCS Texture Coordinate System
TLB Translation Lookaside Buffer
TP Thread Processor
TU Technische Universität
UML Unified Modeling Language
VCS Voxel Coordinate System
VHDL Very High Speed Integrated Circuit Description Language
VOI Volume-Of-Interest
VPU Vector Processing Unit
VRT Volume Rendering Technique
WCS World Coordinate System
WIB Work Instruction Block
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